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Cooperative Navigation (CN) exploits inter-agent relative measurement and communication to achieve 
navigation performance improvement. This technique has attracted worldwide interest in many multi-
agent (e.g., multiple unmanned air vehicles) applications, due to its significant advantage over non-
cooperative approaches. Comparing to prior studies which mainly focused on performance analysis under 
a fixed CN framework, this work aims at establishing the theoretical basis to quantify the navigation 
performance for different CN integration architectures. Two graph variables are defined to describe the 
architecture: relative measurement graph and communication & fusion graph. The measurements are 
integrated through extended Kalman filters, and the state covariance matrices are rigorously derived 
and bounded to establish the relationship between the navigation performance and the integration 
architecture. Simulations are carried out to demonstrate and validate the proposed framework, and the 
results show its feasibility and effectiveness.

© 2021 Elsevier Masson SAS. All rights reserved.

1. Introduction

Multi-agent systems (e.g., multiple aerial vehicles, multiple missiles, etc.) have attracted increasing interest because they bring sig-
nificant benefits to both civilian (e.g., surveillance, environment monitoring, and transportation) and military (e.g., target tracking, air 
exploration, air combat) applications [1–4]. Aside from cooperative control [5,6], cooperative guidance [7,8] and task allocation [9], Coop-
erative Navigation (CN) is one of the basic and key abilities to enable multi-agent cooperative operations. As a novel direction of navigation 
technique, CN can potentially improve navigation performance, enhance navigation robustness, and reduce navigation costs [10].

CN is a “navigation plus communication” technique focusing on the navigation demands of clustered moving agents. Essentially, CN is 
a state estimation problem using both the local information from the onboard sensors and the external information shared by the coop-
erative agents. In this way, CN can provide improved navigation performance and enhanced robustness as compared to non-cooperative 
approaches because CN explicitly utilizes more information in the state estimation process [11].

Prior research on CN can be categorized by agent type as follows: Unmanned Aerial Vehicles (UAVs) [1,12–16], spacecrafts [17], Au-
tomated Underwater Vehicles (AUVs) [18,19], ground vehicles [20,21], smartphones [22], etc. Research on CN for multi-AUV has lasted 
for a long time, and there has been rich and in-depth literature in this field. In contrast, the studies have been recently focusing more 
on the ground, air, and space multi-agent systems. These agents are equipped with multiple sensors for navigation purpose, including 
Global Navigation Satellite System (GNSS), Inertial Measurement Unit (IMU), camera, Ultra-Wideband (UWB), etc. It is worth noting that 
there are also various researches focusing on the cooperative static node localization in Wireless Sensor Network [23], in which the node 
localization is usually estimated using Least-Squares (LS) method [24] or optimization-based methods (e.g., semi-definite programing [25], 
multidimensional scaling [26], etc.). Cooperative node localization in WSN is beyond the scope of this work, however, the framework 
developed in this paper can be extended to this case with some modifications.

Different state estimation methods are employed in existing CN approaches, including the snapshot LS method [27], Extended Kalman 
Filter (EKF) [28,29], Federated Kalman Filter (FKF) [30], Unscented Kalman Filter (UKF) [31], Particle Filter (PF) [22,32], Factor Graph (FG) 
[1,21,33], etc. The main advantage of EKF is its relatively low complexity and its ability to provide the quality of the estimates (i.e., the 
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Fig. 1. An illustrative example of undirected and directed graphs.

variances). Therefore, it is widely used in many CN approaches, and its effectiveness has also been proved in these studies. This work will 
employ EKF as the state estimator in CN systems. And the proposed approaches in this work can also be adapted to support some other 
estimators, e.g., FG, in future work.

The performance of a CN system is highly dependent on the integration architecture. In the literature, the most common integration 
architectures include the “fully-centralized” and the “fully-distributed” schemes. In the fully-centralized architecture, the states of all 
agents are estimated together in the Fusion Center (FC) using all the available information [30,34,35]. And in the fully-distributed scheme, 
each agent estimates its own navigation states using the local information and the information shared by its “neighbors” (defined as the 
adjacent agents that this agent can communicate with) [36,37]. The former gives the best estimation accuracy at the expense of large 
computation and communication loads, and it is even not practically feasible in the case of a large network. Conversely, the latter reduces 
the computation and communication loads while its performance is worse than the fully-centralized one. Aside from the two schemes 
above, there are various other “centralized” and “distributed” integration architectures with the performance and payload in between. This 
work not only addresses the two typical schemes but also the general ones.

Prior studies shown above mainly focus on proving the performance improvement offered by CN over non-cooperative approaches by 
simulations or experiments. Although different algorithms are proposed in these researches, little work aims at revealing the theoretical 
relationship between the CN performance and the integration architecture. In response, this work establishes a performance estimation 
framework for EKF-based CN systems. We first introduce two graph variables, Relative Measurement Graph (RMG) and Communication & 
Fusion Graph (CFG), to mathematically describe the integration architectures. Using graph theory and EKF principles, we then derive the 
relationship between the navigation accuracy with the integration architecture. This framework lays the foundation for the design of the 
CN architectures and is beneficial to navigation performance prediction before or during multi-agent cooperative operations. Besides, this 
framework is developed in a general multi-agent case and thus can be applied to any multi-agent systems, e.g., multi-UAV, multi-missile, 
multi-vehicle systems.

The rest of paper is organized as follows. Section 2 formulates the multi-agent CN problem after providing the preliminaries on graph 
theory and EKF. Then, we propose the performance estimation framework for EKF-based CN systems in Section 3. Simulations are carried 
out in Section 4. Finally, Section 5 draws the conclusions.

2. Preliminaries and problem formulation

2.1. Preliminary on graph theory

First, we introduce the preliminaries on graph theory and algebraic graph theory. A graph G = (V,E) is composed of a non-empty node 
set V and an edge set E ⊆ V × V [38]. The edge set E describes the connectivity among the nodes in V . A distinction is made between 
undirected graph and directed graph: the edges link the two nodes symmetrically in the former while the link is asymmetric in the latter. 
Fig. 1 shows the difference between undirected and directed graphs. We will use the directed graph for the following analysis because it 
represents general cases.

If ( j, i) is an edge in a directed graph G , i.e., there is a link from j to i, then node j is called an in-neighbor (or a neighbor) of node i
while i is called an out-neighbor of j. We define Ni as the in-neighbor set of node i, i.e., Ni = { j ∈ V : ( j, i) ∈ E}. In algebraic graph theory, 
there are some commonly-used matrices that describe the interconnection topology of a network [39]. The adjacency matrix A = [

aij
]

is 
a nonnegative matrix defined by: aij =1, if j ∈ Ni ; aij =0, otherwise. The degree matrix � is a diagonal matrix describing the number of 
in-neighbors of each node. Finally, the Laplacian matrix L is defined as L = � −A.

2.2. Preliminary on EKF

EKF is the extension of classic Kalman Filter (KF) for nonlinear filtering problems and thus is more general than KF [40]. In EKF, the 
state transition and observation models can be nonlinear functions. Equations (1) and (2) show the discrete form of these two functions.

xk = f
(
xk−1, uk

) + ωk (1)

zk = h (xk) + υk (2)

where x is the state vector, f the state transition function, u the input, ω the process noise, z the measurement vector, h the observation 
function, υ the measurement noise vector, and the subscript k denotes the time epoch.

In EKF, the state transition function f is used to compute the predicted states using the previous estimates, and the observation 
function h is used to calculate the predicted measurements from the predicted states. To derive the state covariances, we need to compute 
the Jacobian matrices (including state transition matrix F and observation matrix H ) by linearizing f and h, respectively. Specifically, the 
Jacobians are evaluated with current predicted states at each epoch.
2
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Similar to KF, the steps of EKF can be divided into two distinct phases: “prediction” and “update”. As shown in Equations (3)–(4), the 
prediction step is used to predict the current states and the associated covariance matrix.

xk = f
(
x̂k−1, uk

)
(3)

P k = F k P̂ k−1 F T
k + Q k (4)

where P denotes the state covariance matrix, Q is the covariance matrix of the process noise ω, and the symbols “−” and “∧” on the 
top of the variables indicate “predicted” and “updated”, respectively. Then, Equations (5)–(7) describe the update steps of EKF.

K k = P k H T
k · (Hk P k H T

k + Rk
)−1

(5)

x̂k = xk + K k
(
zk − h

(
xk

))
(6)

P̂ k = (I − K k Hk) Pk (7)

where I is the identity matrix, K denotes the gain matrix, and R is the covariance matrix of the measurement noise υ .

2.3. Problem formulation for multi-agent cooperative navigation

Here, we will formulate the multi-agent cooperative navigation as a state estimation problem over a sensor network. It is assumed that 
the multi-agent system has n agents with a specific interconnection (i.e., inter-agent sensing and communication) topology. Let xi

k be the 
true navigation state vector of agent i at time epoch k, which usually consists of the agent’s position, velocity, attitude, etc. The dynamic 
models of each agent i (∀i=1, 2, . . . , n) are assumed to be known and expressed by the following:

xi
k = f i

k

(
xi

k−1, ui
k

)
+ ωi

k, ∀i=1,2, . . . ,n (8)

where ωi
k is the process noise vector whose covariance is Q i

k .
Besides, each agent is equipped with multiple sensors that output absolute and/or relative measurements. The absolute exteroceptive 

measurement is only for one agent, e.g., pseudoranges from GNSS receivers, while the relative (i.e., inter-agent) measurement is associated 
with two different agents, e.g., range or bearing measurements between them. We use z i

k to denote the absolute measurement vector for 
agent i at epoch k, and the relationship between zi

k and xi
k is given by:

zi
k = hi

k

(
xi

k

)
+ υ i

k (9)

The associated observation matrix is denoted by H i
k which is calculated by linearizing the above equation at xi

k=xi
k . Similarly, when agent 

i finds agent j (i �= j) and obtains the relative measurements between them, the relative measurement can be modeled as:

zi j
k = hi j

k

(
xi

k, x j
k

)
+ υ i j

k (10)

where υ i
k and υ i j

k are the measurement noise vectors, and their covariance matrices are R i
k and R i j

k , respectively. The linearized ob-

servation matrices associated with xi
k and x j

k are separately denoted by 
←−
H i j

k and 
−→
H i j

k , where 
←−
H i j

k =
(
∂zi j

k /∂xi
k

)∣∣∣(
xi

k, x j
k

) and 
−→
H i j

k =(
∂zi j

k /∂x j
k

)∣∣∣(
xi

k,x
j
k

) . In practice, a relative measurement may be available to both agents, e.g., both the agents have access to the same 

range measurement between them. In this case, we have zi j
k =z ji

k , which means υ i j
k is always equal to υ ji

k . On the contrary, the relative 
measurement may be only available to one agent (e.g., i), and then only zi j

k exists in this case.
Then, we introduce a directed graph variable GM = (V,EM), called Relative Measurement Graph (RMG), to describe the relative sensing 

topology in the network. The node set V is composed of each agent, and each edge ( j, i) in the edge set EM ⊆ V × V indicates that agent 
i can obtain the relative measurements between agents i and j. The adjacency matrix of GM is denoted by AM =

[
aij

M

]
where we have: 

aij
M=1, if agent i can obtain the measurement zi j

k ; aij
M=0, otherwise.

For further illustration, Fig. 2 offers an example of a multi-agent system which has 4 agents. This figure shows not only the state 
transition relationship between epochs but also the graph of absolute and relative measurements. And it also gives the corresponding 
adjacency matrix of the RMG. From an EKF perspective, this figure demonstrates all the information available in the network at current 
epoch. In the non-cooperative case, each agent i can estimate its own states xi

k using the local state transition model f i
k and the absolute 

measurements zi
k . Then in the following, we will focus on the implementation of cooperative state estimation using both local information 

and inter-agent relative measurements.
For a given multi-agent system, there are usually various CN integration architectures, each of which uses different sensing and com-

munication topology from the others. For each architecture, the information in use is a subset of all the information available in the 
network. Similarly, the actual communication topology is within the communication topology constraint. Taking the system shown above 
as an example, Fig. 3 provides three different integration architectures: the fully-centralized, the semi-distributed, and the distributed 
ones. Please note, these architectures are only a small subset of all the possible ones.

As shown in Fig. 3, under the fully-centralized architecture, all the states are estimated together in a fusion center by employing all 
the information. On the contrary, under the semi-distributed and the distributed architectures, there are multiple parallel filters, each of 
which utilizes a subset of the information to estimate the states of some agents. And there exist communication links among these filters 
to exchange information (i.e., state estimates) for estimation performance enhancement.
3
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Fig. 2. State transition and measurement graph in an example of a multi-agent system. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

Fig. 3. Three different CN integration architectures for the above multi-agent system. Note that, the numbers after “F” indicate which agent the filter exists in. (For interpre-
tation of the colors in the figure(s), the reader is referred to the web version of this article.)

The CN performance differs significantly among different integration architectures. Therefore, we introduce a directed graph variable 
GCF = (VCF,ECF), namely Communication & Fusion Graph (CFG), to describe the communication and fusion topology used in a CN system. 
4
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Fig. 4. The adjacency matrices of the CFG for the three different integration architectures. (For interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

Before the illustration of VCF and ECF, an important assumption is made as follows, under which we can establish the one-to-one mapping 
between GCF and the actual integration architecture.

Assumption 1. The states of each agent, xi
k , are estimated on and only on one filter.

It is worth noting that this assumption lays the foundation for the following derivations and it is true in most cases. For the cases 
when this assumption is not valid, e.g., xi

k are estimated on several filters, the derivations below should be re-conducted and the consensus 
among different estimates on xi

k needs to be considered. These issues are beyond the scope of this work, and they will be addressed in 
the future.

The node set VCF consists of each agent in V and each filter node, i.e., VCF = V +VF, where VF denotes the node set of filters. The edge 
set ECF ⊆ VCF × VCF can be divided into four blocks: the agent-agent edge set EAA, the agent-filter edge set EAF, the filter-agent edge set 
EFA, and the filter-filter edge set EFF. Their definitions are illustrated as follows. Each edge ( j, i) in EAA indicates that the filter estimating 
xi

k sends x̂i
k to the filter estimating x j

k (including the case where xi
k and x j

k are estimated in one filter). Each edge ( j, i) in EAF means that 
the state of agent i is estimated in filter j. Similarly, each edge (i, j) in EFA represents that filter j sends the estimate x̂i

k to agent i. In 
this work, it is assumed that each state estimate is sent back to the corresponding agent. If there exists an edge ( j, i) in EFF, then filter i
sends some information (specified by EAA) to filter j.

The graph GCF can also be expressed by its adjacency matrix, ACF =
[
aij

CF

]
, where aij

CF is determined by: aij
CF=1, if the edge ( j, i) exists 

in ECF; aij
CF=0, otherwise. Fig. 4 provides the adjacency matrices of each integration architecture shown above, and it also shows the four 

blocks for each matrix. If the RMG (GM) is given, the integration architecture can uniquely determine the adjacency matrix ACF, and vice 
versa.

As shown above, CN systems are obviously more complicated than the traditional multi-sensor integration, especially because of the di-
versity in the integration architectures. Together with the state transition and measurement models, the two newly-defined graph variables 
(i.e., RMG and CFG) can clearly describe a multi-agent CN system. And multi-agent CN can be further formulated to a state estimation 
problem in an algebraic space after introducing the adjacency matrices of the two graphs. Finally, the formulation of a multi-agent CN 
problem can be summarized by Algorithm 1.

Algorithm 1 Multi-agent CN problem formulation.
Given (1) Number of agents, n;

(2) Navigation state vector xi
k of each agent i;

(3) State transition model f i
k and absolute measurement model hi

k for each agent i;

(4) Relative measurement model hi j
k for each directed combination of agents ( j, i);

(5) CN integration architectures (e.g., Fig. 3).

Do (1) Determination of RMG (GM) and its adjacency matrix AM;
(2) Determination of CFG (GCF) and its adjacency matrix ACF.

Output (1) The description of the given multi-agent CN system in an algebraic space.

3. EKF-based CN and its performance estimation framework

3.1. EKF-based CN without filter interaction

There are usually multiple CN integration architectures for a given multi-agent system, and they can be classified into two categories: 
(a) the architectures without filter interaction; and (b) the architectures where filter interaction exists. Under Assumption 1, filter inter-
action refers to that a filter uses some information shared by another filter, i.e., there exists non-zero element in the adjacency matrix of 
EFF. Filter interaction will lead to unknown noise correlations, which will be further illustrated in Section 3.2.

This section focuses on the implementation of EKF-based cooperative state estimation for the architectures without filter interaction. 
Because the fully-centralized architecture is a typical example for category (a), we first use it to illustrate the detailed implementation of 
5
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the filter algorithm. Under this architecture, the filter estimates all the states of every agent and employs all the available information. 
Therefore, the state vector of this filter is a batch of the state vectors associated with every agent, as given below:

xk =
[(

x1
k

)T
,
(

x2
k

)T
, . . . ,

(
xn

k

)T
]T

(11)

Similarly, the state transition model f k is also a batch of f i
k for every agent i. The prediction step of this centralized filter can be expressed 

by:

xk = f k(x̂k−1, uk) (12)

P k = F k P̂ k−1 F T
k + Q k (13)

where uk is a batch of the input vector ui
k , P denotes the state covariance matrix, F k is the batched state transition matrix that is a 

block-diagonal matrix composed of each F i
k , and the process noise covariance Q k is also a block-diagonal matrix consisting of each Q i

k .
As mentioned above, this filter employs all the measurements available in the multi-agent system. Consequently, the measurement 

vector consists of both the absolute measurements and the relative measurements. The measurement equation can be expressed as:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

z1
k
...

zn
k

z12
k
...

zn(n−1)

k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1
k

(
x1

k

)
...

hn
k

(
xn

k

)
h12

k

(
x1

k , x2
k

)
...

hn(n−1)

k

(
xn

k , xn−1
k

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

υ1
k
...

υn
k

υ12
k
...

υn(n−1)

k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

This equation can also be written in a compact form as follows:

zk = hk (xk) + υk (15)

The noise characteristics of υk are described by the measurement noise covariance matrix Rk . And the linearized observation matrix 
associated with hk is given by:

Hk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H 1
k 0 0 0 0

...

0 0 0 0 Hn
k←−

H 12
k

−→
H 12

k 0 0 0
...

0 0 0
−→
H n(n−1)

k
←−
H n(n−1)

k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

In Equations (14) and (16), it is assumed that the relative measurements z12
k and zn(n−1)

k are available in the system. The availability of 
each relative measurement is indicated by the RMG. And if measurement zi j

k is unavailable (i.e., aij
M = 0), then zi j

k should not appear in 
these equations.

Finally, the navigation states can be updated based on the standard EKF equations shown in Equations (5)–(7).
Aside from the fully-centralized one, there are also a variety of other architectures that belong to category (a). For each of these archi-

tectures, each filter inside it estimates a part of the complete state vector shown in Equation (11) by using a subset of the measurements 
given in Equation (14). The state vector of each filter is specified by the CFG, and the associated measurement vector is indicated by both 
CFG and RMG. The implementation of each filter is completely independent and follows the same procedures as those shown above. For 
the sake of brevity, the detailed implementation is not repeated here.

3.2. Bounding the state covariance for EKF-based CN with filter interaction

Different from the architectures in category (a), there exists filter interaction in the architectures belonging to category (b). The in-
teraction between filters will lead to complex noise correlations, and the correlations are usually unknown or very difficult to accurately 
compute. In the CN field, coping with these unknown correlations in EKF is an open research topic. There will be various approaches 
proposed in the future, and each of them may show different performance from the others. Therefore, this section focuses on offering the 
upper and lower bounds on the state covariance instead of providing a deterministic solution. Please note, in this work, a matrix A is an 
upper bound of B if and only if A–B is positive semidefinite, and inversely, B is a lower bound of A.

The unknown correlation caused by filter interaction is also widely known as the data incest problem [41]. This issue is due to the 
re-use of the same information in the fusion process. In the architectures with filter interaction, there are usually iterations in each update 
step. Fig. 5 gives an example of an integration architecture with filter interaction and shows the process of iterative state update. This 
example can be used to explain the mechanism of the data incest problem.

As shown in Fig. 5, the estimates on x1
k and x2

k are coupled with each other, i.e., the estimate on x2
k depends on x̂1

k , and in turn the 
determination of x̂1

k also relies on x̂2
k . Even if there is only 1-step iteration (i.e., steps 1 and 2) at epoch k, x̂1

k+1 will still be coupled with 
6
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Fig. 5. The process of iterative state update in an integration architecture with filter interaction, where the number in parentheses is used to distinguish different estimates.

x̂2
k+1 because their determination uses common information (i.e., the measurements related with x̂2

k ). It becomes very difficult to calculate 
this correlation (between the information from neighbors and the local one) after several filter epochs. And if the unknown correlation is 
ignored in the fusion process, it may lead to over-convergence problems, i.e., the estimation is overly confident, and even the divergence.

Based on the fusion process shown above, the upper bound on the state covariance (i.e., P̂ k) is derived as follows. Let the adjoint 
filter of a filter in CN be the one that discards this filter’s relative measurements. This kind of measurements is called cross-filter relative 
measurements, and the others are called inner-filter measurements. For example, the adjoint filter of F1 in Fig. 5 is a standard EKF that 
estimates x1

k using z1
k ; and the adjoint filter of F1 in Fig. 3(b) is a centralized filter that jointly estimates x1

k and x2
k by employing z1

k , 
z2

k , and z12
k . The upper bound on P̂ k is computed by completely ignoring the effect of iterative state update. Detailed illustrations and 

derivations are given below.
The upper bound on i P̂ k for filter i, u

i P̂ k , is calculated by:

u
i P̂ k = (

I − u
i K k · u

i Hk
) · a

i P k (17)

where a
i Pk is the a priori state covariance matrix in the adjoint filter, and u

i Hk and u
i K k are computed by Equations (18) and (19), 

respectively.

u
i Hk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H i1
k 0 0 0 0

...

0 0 0 0 H im
k←−

H i1i2
k

−→
H i1 i2

k 0 0 0
...

0 0 0
−→
H imim−1

k
←−
H imim−1

k←−
H i1 j1

k 0 0 0 0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

u
i K k = a

i Pk
u
i H T

k · (u
i Hk

a
i P k

u
i H T

k + u
i Rk

)−1
(19)

in which i1, i2, . . . , im are the agents whose states are estimated in this filter; the existence of 
←−
H i1 j1

k in (18) indicates that filter j

estimates the states of agent j1 and sends its information to filter i, i.e., j1 is a neighbor of i1 with relative measurement zi1 j1
k between 

them; and the measurement noise covariance matrix u
i Rk is given by:

u
i Rk = blkdiag

([
R i1

k , . . . , R im
k , R i1i2

k , . . . , R imim−1
k , R̃

i1 j1
k , . . .

])
(20)

where blkdiag() is a function to generate the block-diagonal matrix using the matrices in parentheses; the matrices R i1
k , R i2

k , . . . , R imim−1
k

denote the covariances of υ i1
k , υ i2

k , . . . , υ imim−1
k , respectively; and the covariance matrix R̃

i1 j1
k associated with the measurement zi1 j1

k is 
computed as:

R̃
i1 j1
k = R i1 j1

k +
(−→

H i1 j1
k

)T
a
j P̂

1
k
−→
H i1 j1

k (21)

where R i1 j1
k is the covariance matrix of υ i1 j1

k ; and a
j P̂

1
k is the covariance associated with x j1

k in the posterior state covariance matrix of 

filter j, a
j P̂ k . The second term in the right-hand side of (21) reflects the effect of the noise of ax̂ j1

k (the estimate of x j1
k in the adjacency 

filter) on the estimate of xi1 . This equation can be derived by linearizing the original measurement equation of zi1 j1 :
k k

7
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Fig. 6. Graphic illustration of the adjoint filters and the calculation of the upper bounds.

zi1 j1
k = hi1 j1

k

(
axi1

k , ax̂ j1
k

)
+ ←−

H i1 j1
k

(
xi1

k − axi1
k

)
+ −→

H i1 j1
k

(
x j1

k − ax̂ j1
k

)
+ υ i1 j1

k (22)

where 
←−
H i1 j1

k =
(
∂zi1 j1

k /∂xi1
k

)∣∣∣(
ax

i1
k , a x̂

j1
k

) , 
−→
H i1 j1

k =
(
∂zi1 j1

k /∂x j1
k

)∣∣∣(
ax

i1
k , a x̂

j1
k

) , and 
(

x j1
k − ax̂ j1

k

)
is the noise of ax̂ j1

k .

Using the system in Fig. 5 as an example, Fig. 6 shows the generation of u
1 P̂ k and u

2 P̂ k (i.e., the upper bounds on the state covariance 
for filter 1 and filter 2, respectively) to further illustrate the approach above. As shown in this figure, the calculation of the upper bounds 
takes use of the corresponding adjoint filters, and the adjoint filters run in parallel without any interaction. Together with these adjoint 
filters, the cross-filter relative measurement models offer the necessary inputs to the calculation of the upper bounds on P̂ k .

The proof for u
i P̂ k ≥ i P̂ k is given as follows. Without loss of generality, we use the case in Fig. 5 for the proof. With one or more 

iterations, filter 2 will receive a more accurate x̂1
k and a smaller P̂

1
k from filter 1 than those from the adjoint filter of filter 1. And when 

filter 2 uses the relative measurement z12
k , a more accurate x̂1

k will result in a more accurate x̂2
k . Consequently, filter 2 will obtain a more 

accurate x̂2
k and a smaller P̂

2
k after iterations than without any iteration (i.e., filter 2 directly uses the information from the adjoint filter 

of filter 1). Because the upper bound, u
2 P̂ k , is calculated by completely ignoring the effect of iterations, it will be larger than the actual 

covariance matrix after iterations, 2 P̂ k . This is also true for filter 1, and this conclusion can be extended to the general case.
Then, the lower bound on i P̂ k for filter i, l

i P̂ k , is derived by directly ignoring the unknown correlations caused by filter interaction. The 
unknown correlations essentially come from the data incest problem, and ignoring them can lead to an overly-confident state estimate, 
i.e., the estimated state covariance is smaller than the true one. Therefore, l

i P̂ k can serve as a lower bound for i P̂ k .

Let the ideal filter of a filter in CN be the one that ignores the unknown correlations. The lower bound l
i P̂ k is recursively calculated 

based on this filter. Specifically, l
i P̂ k is calculated by the following:

l
i P̂ k =

(
I − l

i K k · l
i Hk

)
· l

i P k (23)

where l
i Pk denotes the predicted state covariance, l

i Hk is equal to u
i Hk given in (18), and u

i K k are computed as:

l
i K k = l

i Pk
l
i H T

k ·
(

l
i Hk

l
i P k

l
i H T

k + l
i Rk

)−1
(24)

where l
i Rk is the measurement noise covariance used in the ideal filter. The matrix l

i Rk has the same form as u
i Rk in (20) with a different 

R̃
i1 j1
k . In l

i Rk , R̃
i1 j1
k is calculated by

R̃
i1 j1
k = R i1 j1

k + −→
H i1 j1

k
l
j P̂

1
k

(−→
H i1 j1

k

)T
(25)

with 
−→
H i1 j1

k =
(
∂zi1 j1

k /∂x j1
k

)∣∣∣(
lx

i1
k , l x̂

j1
k

) where lxi1
k is the prediction of xi1

k and lx̂ j1
k is the posterior estimate on x j1

k in the associated ideal 

filters. Please note, different number of iterations will result in different R̃
i1 j1
k because the value of l

j P̂
1
k will change with the iterations.

For filter i, the use of the cross-filter relative measurements (e.g., zi1 j1
k ) will lead to unknown correlations between the information 

from the neighbors (e.g., filter j) and the local one. In the approach above, the unknown correlations are completely ignored by (a) letting 
l
i Rk be a block-diagonal matrix and (b) simply using the standard EKF equations. Therefore, the obtained l

i P̂ k is a lower bound for the 
achievable one.

For some architectures, the approach above may generate a lower bound that is even smaller than the result under the fully-centralized 
architecture. This means the lower bound may be overly loose. Therefore, the lower bound can be further optimized to be tighter by 
introducing the following constraint: if architecture b is generated by combining two or more filters in architecture a into a centralized 
filter, then the covariance lower bound associated with an agent under architecture a should not be smaller than that under architecture b. 
For example, the lower bound on the covariance of xi (i = 1, 2, 3, 4) under architecture (b) in Fig. 3 should not be larger than the results 
k

8
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Fig. 7. Overall CN performance estimation framework (FI refers to “filter interaction”).

under the fully-distributed architecture. This is justified because combining several filters into a centralized filter can certainly result in 
improved estimation accuracy than the original case.

3.3. Relationship between CN performance and CN integration architecture

Sections 3.1 and 3.2 present the methods to estimate the CN performance (i.e., state covariance) for a given integration architecture, 
and this section will further establish the relationship between the estimated navigation performance and the CN integration architecture 
using RMG and CFG. Fig. 7 briefly demonstrates the overall CN performance estimation framework, and more detailed illustrations are 
given below.

For a filter i ∈ VF, we need to determine all the necessary matrices for the EKF implementation. These matrices are determined based 
on the given multi-agent system, RMG and CFG. Equations (11)–(16) give the matrices under the fully-centralized architecture, and we re-
label these variables as fc F k , fc Q k , fc Hk , fc Rk , respectively. The construction of fc Hk and fc Rk has indeed taken the RMG into account. To 
explicitly illustrate the effect of RMG, we first define the full measurement matrix f Hk in (26) and the full measurement noise covariance 
f Rk in (27).

f Hk =
[

f H A
k

f H R
k

]
=

n2×n blocks︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H 1
k 0 0 0 0

...

0 0 0 0 Hn
k←−

H 12
k

−→
H 12

k 0 0 0
...

0 0 0
−→
H n(n−1)

k
←−
H n(n−1)

k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(26)

f Rk =
[

f RA
k

f RR
k

]
=

n2×n2 blocks︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1
k

. . .

Rn
k

R12
k

. . .

Rn(n−1)

k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(27)

where the superscripts “A” and “R” indicate absolute and relative measurements, respectively; f H R
k and f RR

k include all the possible inter-
agent relative measurements.

Then we define an RMG-based selection matrix fc SRM
k in (28) to indicate which relative measurements are available in the multi-agent 

system.

fc SRM
k =

remove all−zero rows︷ ︸︸ ︷⎡
⎢⎣

a12
M · I 12 0

. . .

0 an(n−1)
M · In(n−1)

⎤
⎥⎦ (28)

where the size of the identity matrix I i j is equal to the number of rows in H i j
k . Based on fc SRM

k , we re-write fc H k and fc Rk as follows:

fc Hk =
[

f H A
k

fc SRM
k · f H R

k

]
(29)

fc Rk =
[

f RA
k

SRM · RR · ( SRM
)T

]
(30)
fc k f k fc k

9
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Based on the matrices above, the corresponding four matrices for filter i are then constructed by employing the CFG. As shown below, 
we define a CFG-based selection matrix i SA

k to describe which agents’ states are estimated in filter i.

i SA
k =

remove all−zero rows︷ ︸︸ ︷⎡
⎢⎣

ai1
FA · I 1 0

. . .

0 ain
FA · In

⎤
⎥⎦ (31)

where aFA is the adjacency matrix of EFA and aij
FA = 1 indicates that x j

k is estimated in filter i. The size of I j equals to the length of x j
k . 

Based on i SA
k , the state transition matrix i F k and the process noise covariance i Q k for filter i are given by:

i F k = i SA
k · fc F k ·

(
i SA

k

)T
(32)

i Q k = i SA
k · fc Q k ·

(
i SA

k

)T
(33)

Based on the CFG, we also define a selection matrix i SR
k in (34) to indicate which relative measurements are used in this filter as 

inner-filter measurements.

i SR
k =

remove all−zero rows︷ ︸︸ ︷⎡
⎢⎣

ai1
FAai2

FAa12
AA · I 12 0

. . .

0 ain
FAai(n−1)

FA an(n−1)
AA · In(n−1)

⎤
⎥⎦ (34)

where aAA is the adjacency matrix of EAA and amj
AA = 1 indicates that the relative measurement zmj

k is used. Imj will appear in (34) if and 
only if amj

M = 1, i.e., zmj
k is available in the system. Based on i SR

k , the measurement matrix i Hk and the measurement noise covariance i Rk

are calculated by:

i Hk =
[

i SA
k · fc H A

k

i SR
k · fc H R

k

]
(35)

i Rk =
[

i SA
k · fc RA

k · (i SA
k

)T
0

0 i SR
k · fc RR

k · (i SR
k

)T

]
(36)

If filter i does not interact with any other filter, the state covariance i P̂ k can be recursively calculated using i F k , i Q k , i Hk , and i Rk

and following the approach in Section 3.1. Otherwise, we define another CFG-based selection matrix i SFF
k to account for filter interaction:

i SFF
k =

remove all−zero rows︷ ︸︸ ︷⎡
⎢⎢⎢⎢⎢⎢⎣

a12
AA · ai1

FA ·
∑
j �=i

(
a j2

FAaij
FF

)
· I 12 0

. . .

0 an(n−1)
AA · ain

FA ·
∑
j �=i

(
a j(n−1)

FA aij
FF

)
· In(n−1)

⎤
⎥⎥⎥⎥⎥⎥⎦ (37)

where aFF is the adjacency matrix of EFF and aij
FF = 1 indicates that filter j sends some information to filter i. For example, if we have 

a12
AAai1

FAa j2
FAaij

FF = 1 ( j �= i), then: (a) x1
k is estimated in filter i; (b) x2

k is estimated in filter j; (c) z12
k is used in filter i as a cross-filter relative 

measurement; and (d) filter j sends P̂
2
k (or a P̂

2
k , l P̂

2
k ) to filter i. Similarly, Imt will appear in (37) if and only if amt

M = 1, i.e., zmt
k is available 

in the system.
Considering filter interaction, we derive the measurement matrix ∗

i Hk and the measurement noise covariance ∗
i Rk as follows, where 

“*” can be “u” representing “upper bound” or “l” indicating “lower bound”.

u
i Hk = l

i Hk =
[

i Hk

i SFF
k · fc H R

k

]
(38)

∗
i Rk =

[
i Rk

i SFF
k · ∗ R̃

FF
k · (i SFF

k

)T

]
(39)

where we have:

u R̃
FF
k =

⎡
⎢⎣

R12
k

. . .

Rn(n−1)

k

⎤
⎥⎦ +

⎡
⎢⎢⎢⎢⎣

−→
H 12

k
a P̂

2
k

(−→
H 12

k

)T

. . .

−→
H n(n−1)

k
a P̂

(n−1)

k

(−→
H n(n−1)

k

)T

⎤
⎥⎥⎥⎥⎦ (40)
10
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Table 1
Basic simulation settings.

Parameters Values (SI units)

Number of agents 4

Agent dynamic model Constant-Acceleration (CA) model [42], 2-dimension (X and Y )

Navigation state xi =[pi
x; vi

x; ai
x; pi

y ; vi
y ; ai

y ], where the variables p, v , a, and i
denote position, velocity, acceleration, and agent number, 
respectively.

Sampling interval, t 0.1, if not specified.

Simulation time 10

Initial state (truth) [p1
x , p2

x , p3
x , p4

x ] = [p1
y , p2

y , p3
y , p4

y ] = [0, 10, 20, 30]
vi

x = vi
y =1, i=1, 2, 3, 4

ai
x =0.5, ai

y =0.2, i=1, 2, 3, 4

Initial state error covariance, P0 The same for agents 1-4: diag([102, 32, 0.52, 102, 32, 0.52])

Acceleration noise variance, qa qax = qay = [0.12, 0.12, 0.12, 0.12]

Process noise covariance, Q Calculated by: Q = blkdiag(Q x , Q y )

Q ∗ =
⎡
⎣ t5/20 t4/8 t3/6

t4/8 t3/3 t2/2
t3/6 t2/2 t

⎤
⎦qa∗ , ∗ = x or y [42]

Table 2
Measurements and their error covariances.

Measurement type Measurements Error covariances (SI units)

Absolute measurements z1 = [p1
x ; p1

y ] diag([12, 12])

z2 = [v2
x ; v2

y ] diag([0.52, 0.52])

z3 = [p3
x ] 12

z4 = [v4
y ] 12

Relative measurements z12 = z21 = [p2
x − p1

x ] 0.52

z23 = [p3
x − p2

x ; p3
y − p2

y ] diag([0.52, 0.52])

z32 = [v2
x − v3

x ; v2
y − v3

y ] diag([0.22, 0.22])

z34 = z43 = [p3
x − p4

x ; p3
y − p4

y ] diag([0.52, 0.52])

l R̃
FF
k =

⎡
⎢⎣

R12
k

. . .

Rn(n−1)

k

⎤
⎥⎦ +

⎡
⎢⎢⎢⎢⎣

−→
H 12

k
l P̂

2
k

(−→
H 12

k

)T

. . .

−→
H n(n−1)

k
l P̂

(n−1)

k

(−→
H n(n−1)

k

)T

⎤
⎥⎥⎥⎥⎦ (41)

−→
H mt

k appears in (40) and (41) if and only if amt
M = 1. With these matrices determined, the upper bound and lower bound on i P̂ k can be 

calculated by following the approach in Section 3.2.
At the end of Section 3, it is worth mentioning that the sampling and communication intervals also impact the navigation performance. 

This is because they directly influence the recursive process of the EKF. In other words, they influence the availability of the measurements 
at each epoch.

To conclude, Section 3 establishes the theoretical relationship between the CN performance (in terms of state covariance) and the CN 
architecture. Using the adjacency matrices of RMG and CFG, the relationship is expressed in a complete algebraic form. This relationship 
will be highly conducive to analyze the performance sensitivity to the integration architecture, which will be conducted in our future 
work. Furthermore, this also benefits the design of the CN architectures in general multi-agent applications.

4. Simulation results

Various simulations are carried out to further illustrate and validate the proposed CN performance estimation framework. A simple 
multi-agent scenario is simulated for the validation, but please note, the proposed framework is generally applicable to any scenario 
where KF or EKF performs well. Table 1 gives the basic simulation settings, and Table 2 shows the measurements and the corresponding 
error covariances. In the simulations, the measurement errors are assumed to be uncorrelated with each other. It is also worth mentioning 
that this work focuses on establishing the theoretical framework, and thus we pay little attention to the detailed implementation of 
sensing and communication.

Table 3 shows 4 different CN integration architectures for navigation performance comparison. In the fully-centralized case, all measure-
ments are used to jointly estimate the states of all the agents. There are two independent filters in the partially-centralized architecture: 
one is for agent 1 and agent 2, and the other is for agents 3 and 4. The difference between the partially-centralized and semi-distributed 
architectures is that there is filter interaction in the latter one. And filter interaction also exists in the fully-distributed architecture where 
each filter only estimates the states of the associated agent.

Based on the settings above, we compare the navigation performance under different architectures. First, Fig. 8 proves great significance 
of cooperative navigation by comparing the results under the fully-centralized architecture with those in the non-cooperative case. Taking 
agent 4’s X-direction states as an example, this figure shows the curve of navigation performance (root of the estimated state variances) 
11



Table 3
The communication & fusion graph (CFG) for different integration architectures.

Case No. 1 2 3 4
Description Fully-centralized Partially-centralized Semi-distributed Fully-distributed
CFG

Fig. 8. Performance comparison (agent 4, X-direction) between the non-cooperative and the fully-centralized cases, where the black curves denote the estimation accuracy 
and the colored scatters represent the estimation errors in 50 Monte-Carlo runs. (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

in the two cases. This figure also demonstrates the estimation errors in 50 Monte-Carlo runs, and we can draw the same conclusion from 
the Monte-Carlo result as that from the performance curve.

Then, Fig. 9 gives the comparison of navigation performance in terms of accuracy under different integration architectures without 
filter interaction. Accuracy is one of the most important navigation performance indicators, which is derived from the state covariance 
matrix in this work. Navigation accuracy is time-varying for KF-based systems, and the accuracy curves in Fig. 9 offer a direct view on the 
performance comparison over the simulation time span. We can draw the following conclusions from the results.

(1) For every agent, cooperative navigation can achieve improved navigation performance than the non-cooperative approach.
(2) The performance improvement is obviously different among different agents and different states of the same agent. The percentage 

of performance improvement mainly depends on (a) the achieved performance without cooperation and (b) the relationship between 
relative measurements and the states.

(3) By comparing the fully-centralized architecture with the partially-centralized one, we can find that the performance can be enhanced 
more by fusing the information from more agents in a centralized way. This also suggests that as the number of agents increases, 
cooperative navigation can bring greater performance improvement to the multi-agent system.

To demonstrate the performance under the architectures with filter interaction, Fig. 10 shows the upper bounds and lower bounds 
on the navigation performance under the semi-distributed and the fully-distributed architectures. Please note, the lower bounds hereafter 
refer to the ones with 1-step iteration. Besides, we compare the lower bounds with the performance curves derived from the fully-
centralized architecture which generates the best navigation performance. As shown in this figure, the lower bounds and the upper 
bounds are close to each other for some states while they differ significantly for the other states. For the latter phenomenon, on the 
one hand, this is reasonable because there might be various schemes for handling the data incest problem induced by filter interaction, 
and they may result in significant different navigation performance. On the other hand, we will develop tighter lower bounds and upper 
bounds in the future, which will potentially reduce the difference between the two bounds. In addition, an interesting finding is that the 
lower bounds for some states (e.g., agent 2’s X-direction acceleration) approach the best performance curve. This offers clear evidence for 
S. Wang, X. Zhan, Y. Zhai et al. Aerospace Science and Technology 112 (2021) 106628
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Fig. 9. Performance comparison among different integration architectures without filter interaction. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)
13
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Fig. 10. Performance comparison among the fully-centralized, semi-distributed and fully-distributed architectures. (For interpretation of the colors in the figure(s), the reader 
is referred to the web version of this article.)
14
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Fig. 11. The impact of sampling intervals on the navigation performance. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this 
article.)

Fig. 12. The impact of communication intervals on the navigation performance. Please note, the Y-axis of the fourth subfigure is limited to [0, 2] for a clear view. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

the occurrence of data incest problem, i.e., data incest could lead to overly-optimistic estimate (the estimated covariance is smaller than 
the truth).

Aside from the CFG, sampling interval and communication interval also impact the navigation performance. Fig. 11 shows the per-
formance curves under the fully-centralized architecture at different sampling rates. The results suggest that a higher sampling rate can 
speed up the convergence and result in better navigation performance at the expense of higher power consumption.

Besides, Fig. 12 gives the performance bounds under the fully-distributed architecture at different communication rates. This figure 
shows that the communication rate can significantly influence the performance for some states while it has little impact on some other 
states. Therefore, in practice, the communication interval can be set to different values for different links to reduce the communication 
load and power consumption.

Finally, it is worth noting that in this work, we do not verify the proposed upper and lower bounds with a specific CN algorithm. This is 
because, it is still an open research topic to design the CN algorithms for the architectures with filter interaction. Various approaches will 
be proposed in the future, each of which will show different performance from the others. And based on the derivations in Section 3.2, 
their performance will be between the lower and upper bounds. In future work, we will verify and possibly improve the proposed bounds 
with the newly-available CN algorithms.

5. Conclusions and future work

This work establishes a theoretical performance estimation framework for Extended Kalman Filter (EKF)-based multi-agent Cooperative 
Navigation (CN). Two graph variables, relative measurement graph and communication & fusion graph, are introduced to mathematically 
describe the CN integration architecture. Then, the relationships between the navigation performance and the CN integration architecture 
are derived based on EKF and graph theory. Multiple sets of simulations are carried out to validate the proposed approach, and the results 
suggest that the navigation performance is highly sensitive to the integration architecture as well as the sampling and communication 
intervals. The proposed framework lays the foundation for the offline and online design of the CN integration architectures in general 
multi-agent applications.

Our future work includes two folds: improving the proposed framework and applying this framework to optimize the CN architecture 
design. In the first fold, we aim to (a) develop tighter performance bounds for the integration architectures with filter interaction and (b) 
reduce the computation complexity in the performance estimation process. In the second fold, we intend to (a) propose various schemes 
to cope with the data incest problem, (b) develop the CN architecture design theory based on the performance estimation framework, 
and (c) reduce the system’s computational payload and power consumption by cutting down unnecessary sampling and communication 
actions.
15
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