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Multi-agent cooperative navigation can improve navigation performance by taking advantage of inter-
agent communication and relative-sensing capabilities. For Multi-Agent Systems (MAS), the achievable 
navigation performance, communication cost, computation complexity, and sensor cost are directly 
influenced by the sensor configuration and the integration architecture. To reduce hardware cost 
and computation/communication load, this paper proposes a feasible method to realize the offline 
design of sensor configuration and integration architecture for cooperative navigation. Specifically, this 
goal is achieved by solving a multi-objective combinatorial optimization problem, where the sensor 
configuration and integration architecture are considered as the optimization variables; the navigation 
performance requirement is the constraint; and the communication cost, computation complexity, and 
sensor cost are considered as the optimization objectives. This optimization problem is solved by a Multi-
Objective Simulated Annealing (MOSA) algorithm. Using a MAS with three unmanned aerial vehicles as an 
example, simulations are carried out to validate the proposed method, and the results show its feasibility 
and effectiveness. The Pareto solutions reveal the characteristics and applicability of different integration 
architectures in different scenarios, which is meaningful for practical applications.

© 2022 Elsevier Masson SAS. All rights reserved.
1. Introduction

Recently, Multi-Agent Systems (MAS) have attracted increas-
ing research interest especially on their high efficiency and high 
robustness [1]. A variety of MAS have been developed and put 
into the civilian and military fields, including multi-robot systems, 
multi-missile systems, multi-Unmanned Aerial Vehicle (UAV) sys-
tems, etc [2–5]. High-precision navigation is precondition for MAS 
to achieve specific goals such as cooperative search, cooperative 
combat, and cooperative package delivery. To reduce the cost of 
the navigation system and improve its performance, various multi-
agent cooperative navigation technologies have been developed. 
The basic idea of cooperative navigation is employing the commu-
nication and relative-sensing capabilities in the MAS to improve 
the navigation performance of each agent [6–8].

Over the past decade, there have been many researches on 
cooperative navigation algorithms for different platforms, includ-
ing autonomous underwater vehicles [9–11], UAVs [12–14], robots 
[15–18], vehicular networks [19–22] and so on. In these studies, 
the following three types of state estimation methods are com-
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monly used: least-squares estimation, filter, and optimization. The 
least-squares estimation is a snapshot method [23–25], which only 
uses the measurements at the current time to estimate the states. 
Filter algorithms mainly include Kalman Filter (KF), Extended KF 
(EKF) [9,14], Unscented KF (UKF) [26], Particle Filter (PF) [27], etc. 
Among them, KF and EKF are the most widely used algorithms 
because of their simplicity. As compared to least-squares estima-
tion, filter-based estimation methods can generally achieve higher 
accuracy because they further utilize the dynamic models of vehi-
cles. Optimization methods have also attracted extensive attention 
in recent years [28–30], which show the superior performance to 
filters in some complex situations. However, the computation com-
plexity of optimization methods (e.g., factor graph optimization) is 
much higher than that of the filters.

It is worth mentioning that the prior researches mainly focus 
on designing the cooperative navigation algorithms for small-scale 
MAS with specific sensor configurations in static operation scenar-
ios. These researches paid little attention to large-scale swarms, 
e.g., a multi-UAV system with hundreds of or even thousands of 
UAVs. For these large-scale MAS, the traditional centralized archi-
tecture is no longer practically feasible due to the huge compu-
tation and communication load. On the contrary, in decentralized 
architectures, each vehicle just communicates with its neighbors 

https://doi.org/10.1016/j.ast.2022.107491
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/aescte
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ast.2022.107491&domain=pdf
mailto:xqzhan@sjtu.edu.cn
https://doi.org/10.1016/j.ast.2022.107491


H. Wang, S. Wang, X. Zhan et al. Aerospace Science and Technology 123 (2022) 107491
and updates its own state locally. It dramatically reduces the re-
quirements for communication and computation abilities. Besides, 
the loss of a subset of nodes and links does not necessarily prevent 
the rest of the system from functioning, improving the reliability 
and flexibility of MAS. Therefore, from the perspective of coopera-
tive navigation, decentralized architectures will be the mainstream 
solutions for large-scale swarms.

For a MAS, there will be various decentralized architectures, 
each of which has a specific fusion strategy. The navigation perfor-
mance, computation complexity, and communication cost are di-
rectly influenced by the fusion strategy. Prior researches have pro-
posed a series of decentralized fusion strategies to reduce commu-
nication and computation load. In [17], the authors propose a co-
operative navigation fusion strategy that each vehicle just sends its 
own estimate to the neighbors, so that the communication cost can 
be greatly reduces. This fusion strategy has become a mainstream 
way for decentralized cooperative navigation. Nevertheless, few re-
search considered how to select a decentralized fusion strategy by 
a global optimization method. In other words, the existing fusion 
strategies are designed under some potential constraints, e.g., com-
munication links are completely connected. Therefore, they can 
only be applied to some specific scenarios. In order to solve this 
problem, in [31], the authors proposed the concept of integration 
architecture to generally describe the relative measurement topol-
ogy and the fusion strategy, and then the relationship between 
integration architecture and navigation performance is revealed. 
On the basis of [31], this paper further focuses on how to design 
the integration architecture in an offline manner by optimization 
method. The offline design of integration architecture before the 
operational flight is essential for the practical applications of MAS, 
because a proper integration architecture can achieve the balance 
between navigation performance and communication/computation 
load. Besides, this work also takes the sensor configuration into 
account, which determines the maximum achievable navigation 
performance and also the hardware cost. In a word, we propose a 
method to jointly design the sensor configuration and integration 
architecture for a multi-agent cooperative navigation system, with 
the objectives of (a) satisfying navigation performance requirement 
and (b) reducing software complexity and hardware cost. As the 
proposed method is based on optimization, it can be applied to 
the general case.

The offline design of sensor configuration and integration ar-
chitecture could be formulated as a multi-objective combinatorial 
optimization problem after a detailed analysis. The sensor config-
uration and integration architecture are considered to be the opti-
mization variables. The optimization objectives include sensor cost, 
computational complexity, and communication cost. The required 
navigation performance is considered as a constraint. In this work, 
the navigation performance is described by a covariance matrix. 
And it is noteworthy that EKF is selected as the estimator in this 
work, and the theoretical navigation performance is derived from 
the covariance matrix output from the filters. Finally, the optimiza-
tion problem is solved using Multi-Objective Simulated Annealing 
(MOSA). A simulation was carried out to find the corresponding 
Pareto solution set, which proves the validity of this algorithm.

The rest of this paper is organized as follows: Section 2 gives 
the mathematical model of cooperative navigation and presents 
the problem statement for the offline design of sensor configura-
tion and integration architecture. Then, Section 3 formulates the 
optimization problem as a combinatorial optimization mathemat-
ical model. And in Section 4, the MOSA algorithm is adopted to 
solve the optimization problem. Simulations are carried out in Sec-
tion 5 to validate the proposed method. And finally, Section 6
draws the conclusions.
2

Fig. 1. An example of multi-UAV cooperative navigation.

2. Problem statement

Consider a cluster with N collaborating UAVs, as shown in 
Fig. 1. Each UAV is equipped with one or more navigation sensors, 
including Global Navigation Satellite System (GNSS) receiver, Iner-
tial Measurement Unit (IMU), vision sensor, Ultra-Wideband sensor 
(UWB) and so on. Let xi

k be the navigation state vector of UAV i at 
time epoch k, generally including position, velocity, etc. The state 
transition model of UAVs is assumed to be known, which is shown 
as follows:

xi
k = f

(
xi

k−1

) + ωi
k, (1)

where ωi
k is the process noise.

Sensor configuration describes the sensors that are installed on 
the UAVs. These sensors can provide absolute and relative mea-
surements. Combining all the measurements into a vector zk , the 
measurement model can be formulated as:

zk = h(xk) + vk, (2)

where vk is the measurement noise.
In practical applications, the UAVs can either power on all the 

sensors or only use some of the sensors depending on the sur-
rounding conditions and required navigation performance. For ex-
ample, more sensors should be powered on in a scenario with 
high navigation performance requirement and more sensors should 
be powered off in the opposite case. This is because using more 
available sensors can provide higher navigation performance while 
using less can save more energy. To describe the sensor on-off sit-
uations, a directed graph variable G M = 〈V M , E M〉 (V M is the set 
of vertexes, and E M is the set of edges between vertexes), named 
as measurement topology, is introduced. In measurement topology, 
V M represents the UAVs, and E M represents the absolute and rel-
ative measurements of UAVs.

In the inter-agent communication phase, the UAVs share the 
measurements and navigation results with their neighbors, which 
relies on the communication capability. And in the state estimation 
phase, the navigation solutions are obtained by the estimators on 
the UAVs, which is at the expense of computation load. Different 
fusion strategies will result in different communication cost and 
computation complexity. Another graph variable G F = 〈V F , E F 〉, 
called fusion topology, is defined to describe the fusion strategy. 
In this variable, V F represents the UAVs, and the edge in E F from 
vertex i to vertex j indicates that the states of UAV i are estimated 
by the filter on UAV j. The two graph variables, measurement 
topology and fusion topology defined above, combine into the in-
tegration architecture.

A comparison among a fully-centralized architecture, a locally-
centralized architecture, a locally-decentralized architecture, and a 
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Fig. 2. A comparison among different fusion topologies.
fully-decentralized architecture is shown in Fig. 2. It can be seen 
that in the fully-centralized architecture, all the measurements 
are transmitted to one filter, in which all the navigation states 
are estimated together. The fully-centralized architecture can of-
fer the highest navigation performance while its communication 
and computation load are heavy. In the locally-centralized architec-
ture, there are multiple filters, each of which estimates the states 
of a subset of agents using only the information inside this sub-
set. Similarly, in the locally-decentralized, there are also multiple 
filters, each of which estimate the states of multiple UAVs. The dif-
ference is that these filters will share information with each other. 
In contrast, in the fully-decentralized architecture, each UAV just 
communicates with its neighbors and estimates its own state lo-
cally. Because of the different information fusion strategies among 
these four integration architectures, the corresponding navigation 
performance can be very different. Generally, the order of overall 
navigation performance from highest to lowest is fully-centralized, 
locally-decentralized, locally-centralized, fully-decentralized. In re-
turn, the communication/computation load varies greatly among 
these four integration architectures. Besides, an obvious difference 
between the fully-centralized/locally-centralized architectures and 
the locally-decentralized/fully-decentralized ones is that there is 
filter interaction (defined in [31]) in the latter. Filter interaction 
indicates that two filters share information with each other. It will 
lead to data incest problem, which is analyzed in Section 3.3.

In order to understand sensor configuration and integration 
architecture (measurement topology and fusion topology) better, 
Fig. 3 further illustrates the concept of sensor configuration, mea-
surement topology, and fusion topology. This figure also shows the 
relationship between the navigation performance and these three 
variables.

During the entire flight profile, the operation scenario of the 
UAV cluster is time-variant, which leads to the change in the re-
quired navigation performance. Note that the navigation system 
3

should not be targeted at achieving the highest navigation perfor-
mance but aim at satisfying the navigation performance require-
ment. This is because achieving unnecessarily-high navigation per-
formance will lead to a waste of communication and computation 
resources. This motivates us to properly design the sensor configu-
ration and integration architecture before the flight.

In this work, the offline design of sensor configuration and in-
tegration architecture is realized through solving a multi-objective 
optimization problem. As mentioned above, the navigation perfor-
mance requirement is variant in different phases of the mission 
profile. Approximately, the whole flight profile can be divided into 
several segments, and in each segment the navigation performance 
requirement is invariant. Each segment is named as a baseline sce-
nario in this paper. The designer needs to set the corresponding 
weights for each baseline scenario according to the flight mileage 
or time. Due to the different navigation performance requirements 
in each baseline scenario, the corresponding integration architec-
ture is also different. The final optimization result is the Pareto 
solution set of sensor configuration and integration architecture 
sequence for different baseline scenarios. The objective functions 
are sensor cost and the weighted average of communication cost 
and computation complexity in different baseline scenarios, and 
the constraint is navigation performance requirements in different 
baseline scenarios. In this paper, state covariance is taken as the 
navigation performance index.

Finally, the offline design of Sensor Configuration (SC) and Inte-
gration Architecture (IA) is formulated as:

minimize
{

fsensor(SC), fcommunication(SC, IA), fcomputation(SC, IA)
}
,

s.t. C p ≤ 0 (3)

where fsensor , fcommunication and fcomputation are sensor cost, com-
munication cost and computation complexity, respectively, and C p
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Fig. 3. The concept of sensor configuration, measurement topology and fusion topology.
is the required navigation performance minus the actual navigation 
performance.

3. Optimization model

The algebraic expressions of optimization variables, objective 
functions and constraint in the optimization problem above are de-
fined in detail in this section. Without loss of generality, we select 
UAVs as the research objective so that the types of sensors can be 
determined.

3.1. Optimization variables

3.1.1. Sensor configuration (SC)
SC represents the sensors installed on each UAV in a cluster. 

This work uses GNSS receiver, UWB, and vision sensor as three 
typical sensors. GNSS receiver can provide absolute position infor-
mation, UWB can measure the relative distance between UAVs, and 
vision sensor can give the inter-UAV relative orientation informa-
tion. The UAVs are assumed to flight in the same 2-D plane. The 
measurement model of a GNSS receiver is shown as:[

gx(k)

g y(k)

]
=

[
px(k)

p y(k)

]
+

[
vx(k)

v y(k)

]
, (4)

where px and p y forms the 2-D absolute position of the UAV, vx

and v y are the measurement errors. The measurement model of 
UWB between UAV i and UAV j is as follows:

ri j(k) = r ji(k) =
√(

pi
x(k) − p j

x(k)
)2 + (

pi
y(k) − p j

y(k)
)2 + vr(k)

(5)

Note that ri j means the measurement is available for UAV i. The 
measurement model of vision sensor is given by:

θi j(k) = arctan
p j

y(k) − pi
y(k)

p j
x(k) − pi

x(k)
− θi(k) + vθ (k) (6)

where θi(k) is the heading angle of UAV i and we assume its value 
is exactly known (this angle can be obtained by fusing an IMU and 
a magnetometer). Note that θi j indicates that this information is 
only available for UAV i.

Here, two assumptions are made according to the characteris-
tics of the navigation sensors:
4

Assumption 1. To get the UWB relative range measurement, the 
both UAVs need equipping with the UWB sensors of the same 
level.

Assumption 2. To get the vision relative measurement, only one 
UAV needs to be equipped with the vision sensor.

For each navigation sensor, we set four different levels (0, 1, 
2, 3) to represent different qualities of this sensor. Specifically, the 
higher level represents the higher cost and the lower measurement 
error. And level-0 indicates that the sensor is not equipped.

Then, the SC of a UAV cluster can be expressed as a 3×N alge-
braic matrix (N is the number of UAVs), where the three elements 
in each column from top to bottom are the levels of GNSS receiver, 
UWB and vision sensor, respectively. An example is given as fol-
lows:

SC =
⎛
⎝ 1 2 3

0 2 2
1 2 0

⎞
⎠ . (7)

The SC matrix in Eq. (7) represents that in a cluster with three 
UAVs, UAV 1 is equipped with a level-1 GNSS receiver and a level-
1 vision sensor, UAV 2 is equipped with a level-2 GNSS receiver, 
a level-2 UWB and a level-2 vision sensor, and UAV 3 installs a 
level-3 GNSS receiver and a level-2 UWB.

3.1.2. Measurement topology (MT)
MT represents which sensors are powered on and which UAV 

the measurements are used to estimate. MT is described with a 
multi-dimensional matrix by applying the algebraic graph theory. 
This matrix not only describes the availability of each measure-
ment but also indicates the usage of every measurement.

In this paper, three types of sensors are considered, includ-
ing GNSS receiver, UWB, and vision sensor. In this case, a 3-
dimensional 0-1 matrix, MT, with the size N × N×3, is used to 
mathematically describe the measurement topology. Note that the 
dimension of MT depends on the specific characteristics of rela-
tive sensors rather than the number of sensor types. Specifically, 
MT(:, :, 1) is used to describe the measurement topology of GNSS 
and UWB, and MT(:, :, 2) and MT(:, :, 3) are for the vision sensor. 
Table 1 shows the detailed descriptions of each element in MT, and 
Fig. 4 presents an illustrative example.
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Fig. 4. An example of the whole measurement topology.
Table 1
Definitions of the measurement topology matrix.

Matrix element Descriptions

MT(i, i, 1)=1 UAV i powers on the GNSS receiver to observe 
itself.

The obtained measurements are used to 
estimate its own state.

MT(i, j, 1)=1 (i �= j) Both UAVs i and j power on the UWB sensors 
to observe each other.

The obtained measurements are used to 
estimate the state of UAV j.

MT(i, j, 2)=1 (i < j) UAV i powers on the vision sensor to observe 
UAV j.

The obtained measurements are used to 
estimate the state of UAV j.

MT( j, i, 2)=1 (i < j) UAV i powers on the vision sensor to observe 
UAV j.

The obtained measurements are used to 
estimate the state of UAV i.

MT(i, j, 3)=1 (i < j) UAV j powers on the vision sensor to observe 
UAV i.
The obtained measurements are used to 
estimate the state of UAV j.

MT( j, i, 3)=1 (i < j) UAV j powers on the vision sensor to observe 
UAV i.
The obtained measurements are used to 
estimate the state of UAV i.

MT(i, i, k) ≡0 (k = 2, 3) The diagonal elements in MT(:, :, 2) and 
MT(:, :, 3) are all 0.

3.1.3. Fusion topology (FT)
FT represents the fusion strategy of cooperative navigation. In 

this paper, the FT is represented by a N × N 0-1 algebraic matrix, 
FT. In this matrix, FT(i, j)=1 means that the state of UAV i is 
estimated by the filter on UAV j.

Here, an assumption is made to simplify the model [31].

Assumption 3. The state of each UAV is estimated on and only on 
one filter.

Under this assumption, there is no need to consider how to 
achieve the consensus among different estimates on the same 
state. And in this case, for each row of FT, only one element is 
1 and the others are all 0.

3.2. Objective functions

3.2.1. Sensor cost
Sensor cost represents the overall hardware cost of the naviga-

tion system. In this paper, the quality of each sensor is discretized 
5

Table 2
The sensor cost for different levels (Unit: CNY).

Sensor type Level 0 Level 1 Level 2 Level 3

GNSS receiver 0 250 350 450
UWB 0 100 150 200
Vision sensor 0 150 200 250

into four levels, and the higher level represents higher cost and 
higher measurement accuracy. Table 2 gives the sensor cost for dif-
ferent levels of each sensor. Note that the values here are only for 
preliminary analysis, which may not be very accurate. Then, the 
sensor cost of the navigation system can be easily computed by 
combining the sensor configuration matrix (i.e., SC) and the sensor 
costs in Table 2 [32].

3.2.2. Communication cost
Communication cost is measured by the communication bits, 

which indicates the energy consumption of communication. There 
are two modes of data transmission in cooperative navigation: 
transmitting a fixed-size quantized measurement [18,33], or send-
ing the full real-valued data [16]. In this paper, we consider the 
latter, because the former will deteriorate the state estimation re-
sults in the case of few quantized bits [18]. For simplifying the 
model, we make two assumptions as follows.

Assumption 4. Communication links are completely connected be-
tween any couple of UAVs.

Assumption 5. The communication cost for transmitting each real-
valued data is the same, i.e., O (1).

Based on these assumptions, we can compute the overall com-
munication cost as:

Communication Cost = O (1) × (nmeasurement + nstate), (8)

where nmeasurement is the number of transmitted measurements and 
nstate is the number of transmitted states.

3.2.3. Computation complexity
Computation complexity refers to the amount of resource re-

quired to estimate the navigation states. In this paper, the EKF is 
used to estimate the state of each UAV. For an EKF, the computa-
tional complexity is mainly affected by the dimension of the state 
covariance matrix P and the number of fused measurements. And 
for the filter on a UAV, the dimension of P is equal to the di-
mension of the navigation state of a single UAV multiplied by the 
number of UAVs whose states are estimated in this filter. Then, the 
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computation complexity of an arbitrary filter i can be calculated as 
[17]:

Computation Complexity of filter i

= O
[
(Nstate × Ni)

2 × ni
measurement

]
,

(9)

where Nstate is the dimension of the navigation state vector of a 
single UAV, Ni is the number of UAVs whose states are estimated 
on filter i, and ni

measurement is the number of measurements fused 
on filter i.

Then, the total complexity of the cooperative navigation system 
is computed by adding up the complexity of each filter:

Computation Complexity =
∑

i

O
[
(Nstate × Ni)

2 × ni
measurement

]
.

(10)

3.3. Constraint

For the design of sensor configuration and integration architec-
ture, the optimization constraint is the required navigation per-
formance. The navigation performance of a MAS can be divided 
into the absolute navigation performance and the relative naviga-
tion performance. It can be expressed by a graph algebraic matrix:

Navigation performance =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1 p12 · · · p1i · · · p1N

p2 · · · p2i · · · p2N

. . .
...

. . .
...

pi · · · piN

. . .
...

pN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(11)

where pi is the absolute navigation performance of UAV i, and pij
is the relative navigation performance between UAV i and UAV j.

In this paper, the navigation performance is measured by the 
theoretical positioning accuracy, which is derived from the covari-
ance matrices output from the filters. In the following part, we will 
discuss how to quantify the navigation performance in different in-
tegration architectures.

As previously depicted in Fig. 2, the integration architectures 
can be divided into two categories [31]: (a) the architectures 
without filter interaction: fully-centralized and locally-centralized 
ones, and (b) the architectures with filter interaction: locally-
decentralized and fully-decentralized architectures.

For category (a), the state estimation can be implemented with 
a standard EKF procedure. And thus, the theoretical navigation ac-
curacy can be directly derived from the posterior state error co-
variance matrices. But this is not the case for category (b) due to 
the existence of filter interaction. Filter interaction can lead to the 
data incest problem, which means one measurement is used ex-
plicitly or implicitly for several times. It will introduce correlations 
among information, which is difficult to track in practical applica-
tions. In this case, if the state estimation is directly implemented 
using standard EKF while ignoring the correlations, the covari-
ance matrices output from the filters will be overly optimistic (i.e., 
smaller than the true error covariance) and the filters may be di-
vergent [34]. To estimate the achievable accuracy in this case, [31]
provided a method to compute the upper bound on the theoreti-
cal accuracy for the integration architectures belonging to category 
(b). This method is adopted in this work, and its basic principle is 
briefly explained as follows.

Consider two filters with interaction as an example. The infor-
mation used to estimate navigation states can be divided into two 
6

Table 3
The reference variance of each sensor.

Sensor type GNSS receiver UWB Vision sensor

Reference variance 1 m2 0.05 m2 0.001 rad2

categories: (a) local information with no correlation, which will not 
lead to filter interaction, and (b) interaction information between 
filters that will introduce correlations. This method can be divided 
into three steps. First, as shown in Eq. (12), the two filters estimate 
navigation states with local information zlocal

k to obtain x̂local+
k and 

P local+
k . As only the local information is fused, the estimation re-

sults have no correlation with states estimated by the other filter. 
Then, the filters fuse x̂local+

k and interaction information zinter
k using 

EKF update equations to improve the estimation accuracy, which is 
shown in Eq. (13). Finally, as shown in Eq. (14), x̂local+

k and P local+
k

are used to perform the EKF recursive process for next epoch. That 
is to say, at each epoch, only the local information is propagated to 
next epoch, so that the priori estimate at next epoch has no cor-
relation with interaction measurement information and a standard 
EKF can be applied.

1) Fusion of local information:

x̂local+
k = x̂local−

k + K local
k

[
zlocal

k − hlocal
k

(
x̂local−

k

)]
P local+

k = (
I − K local

k H local
k

)
P local−

k .
(12)

2) Fusion of interaction information:

x̂+
k = x̂local+

k + K inter
k

[
zinter

k − hinter
k

(
x̂local+

k

)]
P +

k = (
I − K inter

k H inter
k

)
P local+

k .
(13)

3) Propagation of local information:

x̂local−
k+1 = F kx̂local+

k P local−
k+1 = F k P local+

k F T
k + Q k. (14)

At the end of this subsection, the relationship between the 
measurement accuracy and the sensor level is established, so that 
the measurement covariance matrix R can be determined. In this 
work, it is assumed that the measurement error variance of a sen-
sor is inversely proportional to its level, as given below:

C = Cref

L
(15)

in which C is the error variance of a sensor, Cref is the reference 
variance of the level-1 sensor, and L is the level of sensor. The 
reference variances of each sensor are shown in Table 3 [32].

4. Solving the optimization problem by MOSA

In this section, the MOSA algorithm is tailored to solve the com-
binatorial optimization model above. First, the complexity of the 
combinatorial optimization problem is analyzed, and then the pro-
cedures of MOSA are described in detail.

4.1. Complexity analysis of the optimization problem

In the optimization problem given in Section 3, all the opti-
mization variables are discrete. This means the number of feasible 
solutions for this problem is finite. A rough estimate of the number 
of feasible solutions is presented as follows.

In a MAS with N vehicles, the vehicles can obtain a maximum 
of O (N2) relative measurements at each epoch. Each relative mea-
surement has two statuses: “on” and “off”. Therefore, the number 
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of integration architectures derived from these relative measure-
ments is O (2N2

). It can be seen that the number of integration 
architectures will increase exponentially with the increase of clus-
ter scale.

Then, let us compare the optimization problem complexity with 
that of the well-known Travelling Salesman Problem (TSP) [35]. For 
the optimization problem above, the increasing rate of the number 
of feasible solutions with the increase of vehicles is computed by:

Rate = O (2(N+1)2
)

O (2N2
)

= O
(
22N+1) (16)

In contrast, the number of feasible solutions for TSP is O (N!)
with N being the number of nodes. Therefore, the corresponding 
increasing rate for TSP is:

Rate = O ((N + 1)!)
O (N!) = O (N + 1) (17)

It can be seen that the optimization problem formulated in this 
work has a much higher computation complexity than the TSP. 
Therefore, for the optimization problem in Eq. (3), traveling over 
the whole solution space is impossible. In response, we attempt to 
use MOSA to solve the optimization problem.

4.2. Procedure of MOSA

Multi-objective simulated annealing is a stochastic global op-
timization method based on solid annealing mechanism [36]. For 
high-complexity optimization, MOSA is more suitable than other 
random search methods, e.g., genetic algorithm, for its higher com-
putation efficiency. Besides, it has been proved that MOSA can find 
the global optimal solution with probability 1 after a sufficient 
number of iterations [37]. The basic idea of MOSA is illustrated 
as follows. First, an initial solution is generated randomly and be-
comes the initial Pareto solution set. Then, the initial solution is 
perturbed to generate a new solution. And by comparing the new 
solution with the existing Pareto solution set, we can update the 
Pareto solution set. The above process is repeated until the termi-
nation condition is satisfied. The pseudo-codes of MOSA are shown 
in Algorithm 1.

4.3. Encoding

In this work, the optimization variables are expressed by three 
matrices, i.e., SC, MT, and FT. To solve the optimization prob-
lem, we first need to encode the optimization variables with 1-
dimensional sequences. Three encoding sequences are defined be-
low to represent the three matrices, respectively.

For sensor configuration, the length of the encoding sequence 
is 3N , because the size of SC is 3×N . However, note that each 
UWB sensor installed on the MAS is assumed to be of the same 
level, and thus an addition encoding digit is needed to represent 
this constraint. Consequently, the sensor configuration is actually 
encoded by a sequence with (3N + 1) elements.

Specifically, the encoding criterion is given as: the (3 j-2)th ( j =
1, 2, ..., N) element represents the level of GNSS receiver in vehicle 
j; the (3j-1)th (j=1, 2, ..., N) encoding element is either 0 or 1 
to indicate whether vehicle j is equipped with UWB; the (3 j)th 
( j = 1, 2, ..., N) element represents the level of vision sensor in 
vehicle j; and the last element is the level of the UWB sensors. 
Fig. 5 gives an illustrative example of this encoding criterion.

For measurement topology, the length of the encoding sequence 
is 3N2. However, because the diagonal entries in MT(:, :, 2) and 
MT(:, :, 3) are all 0, 2N elements can be removed from the se-
quence. Therefore, the length of the encoding sequence for MT is 
7

Algorithm 1 MOSA.
Define
x − optimization variable
F o(x), F c (x) − objective functions and constraint functions
Begin
1 Generate an initial solution x randomly
2 Compute F o(x) and F c(x)

3 while the constraint is not satisfied
4 Re-generate an initial solution x randomly
5 Compute F o(x) and F c (x)

6 end while
7 Take the solution x as the initial Pareto solution set
8 while the stopping criteria of outer iteration is not satisfied
9 while the stopping criteria of inner iteration is not satisfied
10 Apply a disturbance to the current solution x to get a new solution x′
11 Compute F o(x′) and F c (x′)
12 Update the Pareto solution set by comparing F o(x′) with F o(x)

13 if x′ gets into the Pareto solution set
14 Accept x′ as the current solution x
15 else
16 Compute the Metropolis acceptance probability PACC

17 if δ < PACC (δ is a random number within (0, 1))
18 Accept x′ as the current solution x
19 end if
20 end if
21 end while
22 Lower the temperature T
23 Select a solution randomly from the Pareto solution set as the current

solution x
24 Reset the inner iteration
25 end while
End

Fig. 5. The encoding sequence of sensor configuration. The color of elements in SC 
and encoding sequence indicates the type of sensor. (For interpretation of the colors 
in the figure(s), the reader is referred to the web version of this article.)

actually 3N2 − 2N . Fig. 6 shows an example of the encoding pro-
cess for a measurement topology.

Finally, the fusion topology is encoded with a sequence whose 
length is N2. Nevertheless, it is assumed that the state of each 
agent is estimated on and only on one filter, leading to only N
nonzero elements in FT. Consequently, there is actually only N el-
ements in the encoding sequence, and the ith element indicates 
the number of the filter that estimates the states of vehicle i. For 
example, the encoding sequence is (1, 3, 3) for the fusion topology:

FT =
⎛
⎝ 1 0 0

0 0 1
0 0 1

⎞
⎠ . (18)

4.4. Neighborhood transformation operator

In Algorithm 1, the disturbance (Line 10) applied to the current 
solution is a neighborhood transformation. It transforms the cur-
rent solution to a new solution in the neighborhood based on the 
designed neighborhood function below:

fNBHD(x) = x′, (19)
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Fig. 6. The encoding sequence of measurement topology.
where fNBHD is the neighborhood function, x is the current solu-
tion, and x′ is the new solution after disturbance.

One of the commonly-used neighborhood transformation meth-
ods in heuristic algorithm is to transform or translocate one single 
element or fragment in the encoding sequence probabilistically. 
The basic principle of the neighborhood transformation method 
used in this work is briefly described as follows. First, the neigh-
borhood transformation probability PNBHD is set. Then, for each 
element in the sequence, generate a random number within (0, 1). 
If this number is smaller than PNBHD , the corresponding element 
will be changed as follows. If this element is a 0-1 variable, it will 
be transformed from the original value to the other one. And if 
this element can take several different values, it will be randomly 
transformed from the original one to one of the other values.

4.5. Metropolis criterion

In Algorithm 1, the Metropolis acceptance probability (Line 16) 
is given by

PACC = exp

(
− E(xnew) − E(xcurrent)

T

)
, (20)

where T is the current temperature, E(xnew) and E(xcurrent) are 
“internal energy” corresponding to the new solution and current 
solution, respectively, which are determined by the values of ob-
jective functions.

For multi-objective optimization problems, E(x) is usually ex-
pressed as the weighted sum of multiple objective functions. In 
this paper, a normalized method based on sampling is developed 
to determine the weights for sensor cost, communication cost, and 
computation complexity. First, generate twenty feasible solutions 
that satisfy the constraint in a random way. Then, for each ob-
jective function, compute the standard deviation with these 20 
samples. Finally, the weights of each objective function can be 
set to the reciprocal of the corresponding standard deviation. This 
normalization method can balance the magnitude of the three ob-
jective functions in E(xnew) − E(xcurrent), avoiding the situation that 
the acceptance probability is too low due to the excessive magni-
tude of one objective function and the search of solution space 
falls into the local optimum.
8

Table 4
Simulation settings.

Parameter Value (SI unit)

Number of UAVs 3

Sampling interval 0.1

Dynamic model 2-dimensional Constant Acceleration (CA) 
model [38]

State vector xi = [pi
x, V i

x, ai
x, pi

y , V i
y , ai

y ]T (i = 1, 2, 3), 
where p, v , a and i denote position, velocity, 
acceleration and UAV number, respectively.

Initial state (truth) [1, 0, 1, 1.5, 1, 1, 2, 0, 1, 0, 1, 1, 3, 0, 1, 2, 1, 1]T

Initial state (estimated) [3, 2, 3, 3.5, 3, 3, 5, 2, 3, 2, 3, 3, 5, 2, 3, 4, 3, 3]T

Initial state error covariance 5×I 18, where In denotes a n × n identify 
matrix

Acceleration noise covariance qax,i = qay,i = 0.01, UAV i = 1, 2, 3.

Navigation performance 
requirement

Baseline scenario 1: 0.23×I 6;

Baseline scenario 2: 0.17×I 6

Weights of two baseline 
scenarios

Baseline scenario 1: 0.7;

Baseline scenario 2: 0.3

PNBHD 0.35

Initial temperature 1000

Minimum temperature 0.5

Cooling strategy T (k) = 0.95T (k − 1)

5. Simulation results

Simulations are carried out in this section to validate the pro-
posed model and algorithm. The simulations are based on an ex-
ample case, where the MAS is composed of three UAVs. The flight 
mission profile consists of two baseline scenarios, in which the 
navigation performance requirement is different. Table 4 gives the 
detailed simulation settings.

The optimization problem and its solver are established with 
the settings in Table 4. And after solving this problem using the 
MOSA algorithm, 38 Pareto optimal solutions are found. Table 5
shows the values of the three objective functions for each solution. 
It can be seen that all the solutions satisfy the Pareto dominance 
relationship, which proves the reasonability of the results.

Then, as shown in Fig. 7, the 38 solutions are plotted in a 
3D space, and they are fitted to form a surface in the 3D space 
(i.e., Pareto front). It is obvious that the shape of the fitted sur-
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Table 5
The values of the objective functions for the Pareto solution set.

Number Sensor cost 
(CNY)

Communication 
cost

Computation 
complexity

1 1750 9.0 820.8

2 1550 6.0 1231.2

3 1800 3.2 1209.6

4 1950 9.0 500.4

5 1750 5.3 1159.2

6 1750 5.0 1234.8

7 1800 7.5 820.8

8 1700 7.8 907.2

9 1750 12.2 486.0

10 1850 10.9 486.0

11 1950 4.1 820.8

12 2050 5.9 468.0

13 1950 9.8 424.8

14 1800 5.7 979.2

15 1550 5.6 1332.0

16 1650 8.5 1134.0

17 1850 6.2 770.4

18 1900 9.4 669.6

19 1750 10.6 756.0

20 1950 5.8 720.0

21 2350 14.4 342.0

22 1500 10.6 1458.0

23 1800 11.5 453.6

24 1950 2.9 1108.8

25 1850 5.0 1159.2

26 1650 5.0 2268.0

27 1750 8.1 900.0

28 2150 4.1 644.4

29 1700 8.4 871.2

30 1700 7.1 1159.2

31 1550 5.3 1407.6

32 1700 11.5 518.4

33 1900 5.6 979.2

34 1650 12.0 1004.4

35 2200 8.7 424.8

36 2100 19.8 417.6

37 1650 11.0 1018.8

38 1650 18.4 633.6

Fig. 7. Pareto front of sensor configuration and integration architecture. The black 
points are Pareto solutions. The color of the surface indicates the value of sensor 
cost.

face conforms to the basic properties of a Pareto front. Because 
the heuristic algorithm (e.g., MOSA) cannot guarantee to find all of 
the Pareto optimal solutions, the Pareto front can be used to pre-
dict the other possible solutions.
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Fig. 8. X-Y view of the Pareto front. The color of the surface indicates the value of 
sensor cost.

Table 6
The number of different integration architectures.

Baseline scenario 1 2

Fully-decentralized architecture 16 2
Locally-decentralized architecture 15 20
Locally-centralized architecture 6 0
Fully-centralized architecture 1 16

In order to make the results clearer, the X-Y view of Fig. 7 is 
shown in Fig. 8. From Fig. 8, it can be seen that the higher the sen-
sor cost, the less the communication and computation resources 
are consumed. This is because the higher sensor cost indicates that 
the quality of the sensors is better, and in this case meeting the 
navigation performance requirement needs less sensors, thereby 
reducing the computation and communication costs. By analyzing 
the integration architecture of the solutions, we know that only the 
solution in the upper left region adopts the fully-centralized inte-
gration architecture in both two baseline scenarios while the other 
solutions use a decentralized fusion strategy. Obviously, compared 
to the centralized integration architecture, the decentralized in-
tegration architecture can reduce computation complexity greatly. 
Besides, the variety of decentralized integration can make it easier 
for cluster to adapt to different scenarios.

The results shown in the two figures above are obtained by 
weighting the two baseline scenarios, as explained in Section 2. 
For a fixed sensor configuration, the integration architectures will 
be different in different scenarios. To show the difference between 
the integration architectures in two baseline scenarios, Fig. 9 sep-
arately presents the Pareto solution sets for these two scenarios. 
Besides, Table 6 counts the number of different types of integra-
tion architectures for the two scenarios. Two conclusions can be 
drawn from Fig. 9 and Table 6.

Remark 1. As the navigation performance requirement becomes 
higher, the communication cost and computation complexity tend 
to be larger.

Remark 2. The integration architecture for cooperative navigation 
will transition from a fully-decentralized one to a fully-centralized 
one with the improvement of required navigation performance.

This is because that using a centralized fusion topology is bene-
ficial to improving the navigation performance as compared to the 
decentralized integration architectures. This finding also inspires 
us to investigate the online design method of integration architec-
tures for a fixed sensor configuration, which will be shown in our 
future work.
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Fig. 9. Pareto solutions for two baseline scenarios. The bottom two subfigures are the X-Y view of the top two subfigures, and the color indicates the sensor cost.
To conclude, the results shown above prove the effectiveness 
of the proposed model and algorithm. This solution framework is 
beneficial to the practical applications of multi-agent systems. This 
is because designing the sensor configuration can cut down the 
hardware cost, and designing the integration architecture is help-
ful to reduce the communication load and computation complexity. 
This work also takes into account the variation in the required nav-
igation performance in different phases of a flight mission, and 
thus it can help the MAS be adapted to dynamic operation sce-
narios.

6. Conclusions

This paper provides a method to realize the offline design of 
sensor configuration and integration architecture for cooperative 
navigation in multi-agent systems. The motivation is to reduce 
sensor cost, communication cost, and computation complexity of 
the cooperative navigation system while ensuring that the naviga-
tion performance requirement is satisfied. This goal is achieved by 
solving a multi-objective combinational optimization problem via 
multi-objective simulated annealing. The mathematical model of 
this optimization problem is established by algebraic graph theory 
and state estimation method, and the algorithm to solve it is tai-
lored. Finally, simulations are carried out. Through random search 
in the discrete solution space, a Pareto solution set based on three 
objective functions is found. And the Pareto solutions reveal the 
characteristics and application scenarios of different integration ar-
chitectures.

This work is beneficial to the practical applications of multi-
agent systems. It reflects the relationship between sensor cost, 
10
communication/computation load and different integration archi-
tectures. Therefore, it can help to select a proper integration ar-
chitecture to reduce navigation cost and unnecessary energy con-
sumption under navigation performance constraint. In the future, 
our continuous efforts will be paid to the following topics: (a) re-
fining the optimization models, (b) investigating the online design 
of integration architectures, and (c) developing a more efficient op-
timization algorithm.
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