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Abstract 

 

Carrier-phase ambiguity resolution (AR) facilitates rapid and precise GNSS positioning. This work describes an integrity 

monitoring algorithm to ensure high integrity of AR-enabled GNSS positioning systems, such as PPP-RTK and RTK. Prior 

studies either (a) only focused on protecting ambiguity-float GNSS positioning against faulted observations (i.e., raw 

measurements or correction products) or (b) evaluated the integrity risk from incorrect ambiguity resolution while assuming the 

observations as fault-free. These approaches or their simple combinations cannot address the cases where observation faults 

threaten ambiguity-fixed GNSS positioning, because the occurrence of observation faults affects the risk from incorrect-fix 

events. The proposed approach can accommodate observation faults and incorrect-fix events simultaneously, through a modified 

multiple hypothesis solution separation (MHSS) architecture. Specifically, multiple incorrect-fix events are considered under 

each of the monitored hypotheses that assume the health status of the observations. Fault detection is performed by comparing 

each subset solution with the all-in-view solution. And when evaluating the protection levels, the integrity risk from the incorrect-

fix events is quantified under each of the monitored hypotheses. Simulation results prove the effectiveness of the proposed 

algorithm and show that enabling ambiguity resolution greatly benefits navigation performance. 
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1. INTRODUCTION 

 

Precise and trustworthy localization plays a crucial role in emerging autonomous systems, especially in safety- or payment- 

critical applications such as highly automated vehicles (HAVs) and urban air mobility (UAM). In these applications, misleading 

localization information may lead to serious accidents. Therefore, it becomes a solid demand to ensure high navigation integrity 

aside from improving navigation accuracy. 



Compared to civil aircraft, emerging autonomous systems usually require their onboard navigation engines to meet more 

stringent navigation requirements [1], which cannot be satisfied by global navigation satellite systems (GNSS) single point 

positioning (SPP). To meet the strict requirement on accuracy, GNSS carrier-phase observations need to be used aside from 

pseudoranges. As typical GNSS positioning techniques using carrier phases, real-time kinematic (RTK) and precise point 

positioning (PPP) with fast ambiguity resolution (known as PPP-RTK) can offer accurate and continuous positioning services 

with a short convergence period. These advantages partly come from the fact that they employ observation-space-representation 

(OSR) or state-space-representation (SSR) correction products. And they also benefit from carrier-phase integer ambiguity 

resolution (AR), because correctly fixing the ambiguities will greatly facilitate rapid and precise GNSS positioning [2]. 

On the other hand, integrity monitoring must be implemented to ensure high integrity for PPP-RTK and RTK. PPP-RTK 

and RTK are vulnerable to the faults in GNSS raw measurements (i.e., pseudoranges and carriers) and those in correction products. 

They may also experience large errors when incorrect-fix (IF) events occur in the AR step. An IF event is said to occur when at 

least one of the fixed ambiguities differs from its truth. Fig. 1 summarizes the threats that a PPP-RTK or RTK navigation engine 

may encounter and shows their effects on the position estimates. This figure discusses three cases, among which case (c) is the 

most general one and is closest to the real situation of the navigation systems for autonomous platforms. Accordingly, this paper 

aims at developing an integrity monitoring algorithm for ambiguity resolution enabled GNSS positioning, e.g., PPP-RTK and 

RTK, which can protect the navigation engine against measurement faults, product faults, and IF events, simultaneously. 
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Fig. 1 Threats for a PPP-RTK or RTK navigation engine 

Recently, there have been a few studies focusing on integrity monitoring of RTK, precise point positioning (PPP), and PPP-

RTK. However, most of the prior studies focused on the first two cases shown in Fig. 1. To be more specific, these studies can 

be divided into two categories as follows: 

 Only considering ambiguity-float solutions, i.e., case (a) in Fig. 1. 

Gunning et al. designed an integrity monitoring algorithm for kinematic PPP based on solution separation [3], and then this 

work was extended to support tight integration of PPP and inertial measurement unit (IMU) [4]. Blanch et al. proposed several 

effective approaches to reduce the computational load of the PPP integrity monitoring algorithm [5]. 

 Only accounting for incorrect ambiguity resolution, i.e., case (b) in Fig. 1. 



To quantify the risk from incorrect ambiguity fixes, Khanafseh et al. developed an approach to evaluate the position-domain 

integrity risk for cycle ambiguity resolution problems under a fault-free condition [6]. In addition, Green and Humphreys 

proposed a data-driven approach to evaluate the position-domain integrity risk of generalized integer aperture bootstrapping [7]. 

To conclude, existing studies either (a) only considered ambiguity-float solutions or (b) evaluated the risk from incorrect 

ambiguity fixes while assuming the measurements and correction products to be fault-free. Therefore, they are not applicable to 

the cases where measurement faults and/or product faults occur to ambiguity resolution enabled GNSS positioning systems. And 

these cases can neither be handled by a simple combination of existing methods (e.g., combining [3] and [6]), because the 

integrity risk coming from incorrect-fix events is affected by the occurrence of measurement faults and/or product faults. 

In response, this paper describes an integrity monitoring algorithm to protect AR-enabled GNSS high-precision positioning 

(e.g., PPP-RTK and RTK) against measurement faults, product faults, and incorrect ambiguity fixes simultaneously. We use a 

simplified PPP-RTK model as an example to develop the integrity monitoring algorithm, but it is worth noting that this algorithm 

is also applicable to RTK with minor modifications. The simplified PPP-RTK model is established by ignoring all the spatial and 

temporal error correlations and considering the error models as accurately known. 

The proposed algorithm is developed based on multiple hypothesis solution separation (MHSS), because it offers promising 

performance and provides a straightforward evaluation of protection levels (PLs). First, a list of fault modes that need to be 

monitored is determined. Each fault mode corresponds to a hypothesis about the health status of the GNSS measurements and 

the correction products. Then, this algorithm computes the position estimates for each of the monitored hypotheses. Fault 

detection is performed by comparing each fault-tolerant solution with the all-in-view one. And finally, the corresponding 

protection levels will be computed if there is no fault alarm. In this step, multiple incorrect-fix events are considered under each 

of the monitored hypotheses, and their contributions to the integrity risk are rigorously quantified. Please note that in this paper, 

the integer ambiguity resolution function is implemented using the integer bootstrapping (IB) method [8], because it offers a 

closed-form formula to calculate the prior probabilities of each incorrect-fix event.  

The rest of this paper is organized as follows. Section 2 introduces the principles of ambiguity resolution enabled GNSS 

positioning techniques, and Section 3 presents the proposed integrity monitoring algorithm for AR-enabled GNSS positioning. 

Simulations are carried out in Section 4 to validate the proposed algorithm. And finally, Section 5 draws the conclusions. 

 

2. BASIC PRINCIPLES OF AMBIGUITY RESOLUTION ENABLED GNSS POSITIONING  

 

This section uses a simplified undifferenced, uncombined PPP-RTK model as an example to describe the principles of 

ambiguity resolution enabled GNSS high-precision positioning techniques. 

 

2.1 Measurement Models, Correction Products, and State Dynamics 

 

(1) Measurement Models 

PPP-RTK uses the code and carrier-phase observations from a receiver to estimate the user’s position and other related 

parameters. The code and carrier-phase observations are respectively formulated as follows: 

 (1) 

 (2) 

where: 



 are pseudoranges, carrier phases, and the derived distance from carrier phases, respectively; 

 indicate the indexes of satellite, receiver, signal frequency, and constellation, respectively; 

  represents the position of a receiver or a satellite; 

  is the clock offset of receiver or a satellite in meters; 

  is the inter-system bias in meters; 

  is the zenith troposphere wet delay; 

  is the mapping coefficient for troposphere wet delay; 

  denotes the slant ionosphere delay; 

  is the signal wavelength; 

  is a frequency-dependent factor, . 

  represents the code bias of a receiver or a satellite; 

  is the carrier-phase integer ambiguity of a signal; 

  represents the errors that can be eliminated using models, such as phase wind-up, satellite antenna offsets, etc.; 

  are unmodeled code and carrier-phase white noises. 

(2) Correction Products 

In addition to the raw measurements above, PPP-RTK users also need to subscribe the SSR correction services, which 

include the following products: (a) precise satellite orbits, (b) precise satellite clocks, (c) satellite code biases, (d) satellite phase 

biases, (e) regional troposphere corrections, and (f) regional ionosphere corrections. These products can be modeled as: 

 Orbit: ;  Clock:  (3) 

 Code bias: ;  Phase bias:  (4) 

 Troposphere: ;  Ionosphere:  (5) 

where   and   are the errors of orbit products and clock products, respectively, and their effects on the ranging 

measurements are bounded by the signal-in-space range error (SISRE), .  and  represent the errors of satellite code 

bias and phase bias products, respectively.  and  are the PPP-RTK server-end systematic offsets of the satellite bias 

products. Finally,  and  are the errors of the troposphere and ionosphere products, respectively. 

(3) State Vector 

In the simplified PPP-RTK user positioning model, the state vector to be estimated is given as (using a dual-frequency dual-

constellation configuration as an example): 

  (6) 

where the superscript “G” denotes GPS and “C” represents Beidou. The second term  is the receiver clock offset in meters. 

  represents the receiver differential code bias (DCB) between the second-frequency code measurements and the first-

frequency ones.  denotes the receiver phase biases.  is the slant ionosphere delay vector, and  is the ambiguity vector. 

(4) Stochastic Models 

The stochastic error models for the GNSS raw measurements and the correction products are summarized in Table 1. Then, 

Table 2 presents the error models for the initial state vector. Finally, Table 3 shows the stochastic models for the state process 

noises. The values in these tables should be viewed as preliminary, and they are used for demonstration purposes only. 

 



Table 1. Stochastic error models for the raw measurements and the SSR correction products 

Error Sources Variables Error Models 

Carrier phases  
 [m2], where  is the elevation angle; 

,  

Pseudoranges   [m2],  

SISRE   [m] 

Satellite code biases   [m] 

Satellite phase biases   [cycle] 

Troposphere corrections   [m] 

Ionosphere corrections   [m] 

Table 2. State initialization and initial state error covariances 

States Variables Initial value Initial covariance 

Receiver position  From SPP  [m2] 

Receiver clock offset  From SPP  [m2] 

Receiver ISBs  0  [m2] 

Receiver DCBs  0  [m2] 

Receiver phase biases  0  [cycle2] 

Zenith wet troposphere delay  0  [m2] 

Slant Ionosphere delays  0  [m2] 

Ambiguities  0  [m2] 

Table 3. Stochastic models for state process noises 

States Variables Process Noise Models 

Receiver position  At each epoch, reinitialize it using SPP and set its covariance to  

Receiver clock offset  At each epoch, reinitialize it using SPP and set its variance to  

Receiver ISBs  Random walk:  [m] 

Receiver DCBs  Random walk:  [m] 

Receiver phase biases  Random walk:  [cycle] 

Zenith troposphere wet delay  Random walk:  [m] 

Slant Ionosphere delays  Random walk:  [m] 

Ambiguities  Constant value:  [cycle] 

 

(5) Assumptions 

The simplified PPP-RTK model is established based on the models above and the following four assumptions: (a) all the 

error models are accurately known; (b) all the error terms follow zero-mean Gaussian distributions; (c) there is no correlation 

between any two error terms; (d) there is no temporal correlation for any error term. Although these assumptions may be too 

idealistic, they can be used to set up a preliminary integrity monitoring algorithm for AR-enabled GNSS positioning. In future 

work, we will improve the proposed algorithm to take temporal and spatial error correlations into account [9][10]. 



2.2 Ambiguity-Float State Estimation 

 

Based on the functional models and error models above, the state vector in Equation (6) can be estimated using a Kalman 

filter (KF) or a sliding-window least-squares (SWLS) estimator. Fig. 2 shows a comparison between these two estimators, and 

they will be briefly introduced below. 
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Fig. 2 Comparison between the Kalman filter and the sliding-window least-squares estimator 

(1) Kalman Filter 

The Kalman filter is a recursive estimator that includes two distinct phases in one iteration: predict and update. The predict 

phase uses the state estimate from the previous timestep and the state model to produce an estimate of the current state as follows: 

  (7) 

  (8) 

where   and   are respectively the predicted and updated state estimates; accordingly,   and   are respectively the 

predicted and updated state error covariance matrices.  denotes the state transition matrix from epoch ( -1) to epoch , and 

 is the process noise covariance matrix.  and  can be determined based on Table 3. 

In the update phase, the filter generates the updated state estimate by incorporating the new measurements, as shown below: 

  (9) 

  (10) 

  (11) 

where  denotes the measurement vector,  represents the measurement matrix,  is the measurement noise covariance 

matrix, and  is the Kalman filter gain.  

The measurement vector, the measurement matrix, and the measurement error covariance matrix are respectively given by: 

  (12) 

  (13) 



  (14) 

where   denotes the corrected pseudorange vector,   is the corrected carrier phase vector. To be more specific, when 

calculating the innovation vector for pseudoranges and carrier phases, the raw code and carrier-phase measurements are corrected 

by (a) eliminating the error terms that can be modeled, i.e., , (b) employing the precise orbit and clock products, and (c) 

applying the satellite code and phase bias products. Therefore, the errors existing in (b) and (c) should be considered in the 

determination of . For the sake of brevity, the detailed formulas of  and  are not shown here, and they can be easily 

obtained based on Equations (1) ~ (2) and Table 1. 

Finally, special attention should be paid to the satellite code and phase bias products. As shown in Equation (4), there are 

systematic offsets in the satellite signal bias products, which come from the receiver network of the PPP-RTK server end. 

Fortunately, it can be verified that these offsets will not influence the position states and the ambiguity states, because they will 

be absorbed by the receiver clock parameters (  and ) and the receiver signal bias parameters ( ). Therefore, the 

estimated ambiguity vector maintains its integer nature, and the position error is unbiased. 

(2) Sliding-Window Least-Squares (SWLS) Estimator 

The KF employs all the current and past information to estimate the current state. In contrast, the SWLS estimator generates 

the optimal estimation on the current state by only using the information in a time window. From an integrity perspective, the 

SWLS has an advantage over the KF in that it limits the exposure time to the measurements occurring farther in the past than a 

certain time. If the exposure time grows over time, as is the case with a KF, the prior probability of measurement or product 

faults occurring will keep becoming larger, thereby potentially increasing the integrity risk [4]. 

The implementation of a SWLS estimator for PPP-RTK is described as follows. The batch measurement model is given by: 

  (15) 

  (16) 

where  is the length of the sliding window;  and  denote the measurement noise vector and the process noise vector 

at epoch , respectively;  represents the normal distribution with a mean  and a covariance .  

The measurement model above can be solved using a standard weighted least-squares estimator, as shown below: 

  (17) 

  (18) 



where  denotes the error covariance matrix for the estimated state vector . The state estimate and its error covariance 

 for the current epoch can be simply extracted from  and . 

 

2.3 Ambiguity Resolution 

 

After obtaining the ambiguity-float solution using the approaches above, the positioning accuracy of PPP-RTK can be 

further improved by taking advantage of the integer nature of the carrier-phase cycle ambiguities. This can be achieved by 

implementing ambiguity resolution, which aims at fixing the float ambiguity vector to an integer vector. In this paper, the 

ambiguities are resolved using the integer bootstrapping (IB) approach [8]. In addition, the ambiguity resolution is performed in 

a “continuous” mode in the Kalman filter, i.e., only the float solution is passed forward to the next epoch. 

The integer bootstrapping-based ambiguity resolution includes the following steps. First, extract the float ambiguity vector 

 and its covariance  from  and . Then, perform the decorrelation (or called “reduction”) process to 

the original ambiguity vector based on the following Z-transformations [11]: 

  (19) 

where  is the transformation matrix;  denotes the ambiguity vector after decorrelation, and  is its error covariance. 

Next, implement the integer bootstrapping method to fix the decorrelated ambiguity vector  to the integer vector . 

This process can be explained as follows. The IB method fixes ambiguities sequentially. The order is determined according to 

the ambiguity conditional variances, and the ambiguity having the lowest conditional variance is fixed first. The  

conditional variance ( ), defined as the variance of the  ambiguity conditioned on the previous ambiguities in the set 

 being fixed, is given by the  diagonal element of a diagonal matrix , and  is obtained by: 

  (20) 

where  is a triangular matrix. 

In the fourth step, evaluate the success rate (i.e., the probability of correct fix) of this ambiguity resolution process by [8]: 

  (21) 

where   is the number of ambiguities in the ambiguity vector ;   denotes the true value of  ;   represents the 

cumulative distribution function (CDF) of a zero-mean unit normal distribution, i.e., . 

 And in the fifth step, obtain the fixed value of the original ambiguity vector by the following:  

  (22) 

Finally, use the fixed ambiguities to correct the “float” position estimate, . As a result, one can obtain the fixed position 

estimate and its error covariance matrix by [11]: 

  (23) 

  (24) 

where   denotes the error covariance matrix between   and  , and   is the error covariance of  , i.e., 

. Both   and   can be extracted from  . Accordingly,   is the error covariance of the fixed position 

estimate, i.e., . This completes the whole process for the IB-based ambiguity resolution. 

 



3. MHSS-BASED INTEGRITY MONITORING FOR AR-ENABLED GNSS POSITIONING 

 

The PPP-RTK user positioning systems serving autonomous systems may encounter occasional faults from the GNSS raw 

measurements and/or the correction products. In addition, they might experience large errors when there are incorrectly fixed 

ambiguities. To ensure high integrity of PPP-RTK, this section describes an integrity monitoring algorithm to address these 

threats by employing multiple hypothesis solution separation. The overall flowchart of this algorithm is shown in Fig. 3, and the 

descriptions of each step will be provided in the following subsections. 
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Fig. 3. The flowchart of the proposed integrity monitoring algorithm for PPP-RTK positioning 

 

3.1 Threats for PPP-RTK User Positioning 

 

Table 4. Fault Sources for PPP-RTK Positioning Systems 

Sources Failures 

Receiver 

Measurements 

Heavy multipath interference or non-line-of-sight (NLOS) reception 

Undetected cycle slips 

Ionosphere scintillation 

Correction 

Products 

Incorrect orbit or clock products 

Incorrect satellite bias products 

Incorrect troposphere or ionosphere products 

 

Table 4 summarizes the possible sources of faults that may threaten PPP-RTK positioning systems. In this paper, all the 

fault events that affect a satellite are grouped to be the event that a satellite is faulted due to any causes. Let  denote the event 

that satellite  is faulted and  be its prior probability. Please note that a satellite is called to be faulted if it is faulted at 

any epoch over the exposure time interval. In addition, it is assumed that  is independent of  for any combination of  

and  ( ). In future work, the integrity monitoring algorithm will be modified to be free of this assumption. 

 

3.2 Determination of the Fault Modes that Need to be Monitored 

 



To implement MHSS, an essential step is to determine the fault modes that are worth monitoring [12]. In this work, a fault 

mode is a hypothesis about the health status of each satellite, and it is accompanied with a subset that includes all the 

measurements and products associated with the healthy satellites. This work adopts the method given in [12] to determine the 

fault modes that need to be monitored and to compute the probability from unmonitored faults, . 

For a clearer illustration, the following is an example of a fault mode, : 

  (25) 

where  denotes the event that satellite  is healthy. The prior probability of  is given by: 

  (26) 

And the estimator associated with  will discard the measurements and products of satellite 1 over its exposure time interval. 

 

3.3 Ambiguity Resolution Success Rate Test and Fault Detection 

 

Let   index the monitored hypotheses,   0, 1, …,  , where   0 represents the fault-free  hypothesis. For each 

monitored hypothesis  , the corresponding ambiguity-float navigation solution   and its error covariance   can be 

produced using the approaches shown in Section 2.2. Hereafter, the subscript  is omitted to lighten the notations. 

Subset 0 (all-in-view)

Fixed Float

Y N

Subset 1

Fixed Float

Y N

Subset 

Fixed Float

Y N

...

...

...

Subset 1     Subset  

Float Float

...

...

 

Fig. 4. Flowchart of the proposed ambiguity resolution success rate tests 

Then, for each hypothesis  from 0 to , the proposed algorithm will determine whether the float ambiguities should 

be fixed according to the AR success rate given in Equation (21). Although an ambiguity vector can always be fixed by the IB 

method, it is not recommended to do so if the success rate is low. This is because in this case, the fixed solution might be not 

reliable due to the occurrence of incorrect-fix events. In addition, as will be shown in the next subsection, a large number of 

ambiguity candidates (including one correct-fix event and various incorrect-fix events) need to be monitored in this case, which 

will make the computational load unacceptably large. 

The proposed AR success rate tests are illustrated as follows and are summarized in Fig. 4. Let  be the success rate 

threshold for the all-in-view subset and  be the one for other subsets. For example,  0.9999 and  0.99. As 

shown in Fig. 4, if the all-in-view solution is not fixed, then other solutions should also remain float. This strategy is designed 

to ensure that the information used by each fault-tolerant estimator is a subset of the information used in the all-in-view estimator. 

Next, fault detection is performed based on MHSS. For each fault mode, there are three solution separation tests, one for 

each position component. The construction of the test statistics and test thresholds varies with the fix status of the all-in-view 



solution and the fault-tolerant solutions. Therefore, in the following, we will discuss all the possible cases one by one.  

(1) The all-in-view solution is not fixed 

In this case, all the solutions are float, and thus the test statistics are given by: 

  (27) 

where  1, 2, 3 representing east, north, and up position coordinates, respectively. The solution separation variance is given by: 

  (28) 

where  is the variance of the  position coordinate. Then the test threshold is determined by: 

  (29) 

where  is the ( ) quantile of a zero-mean unit normal distribution;  denotes the false alert budget allocated 

to the  position component. 

(2) The all-in-view solution is fixed 

For each fault mode  ( ), the test statistics and thresholds are computed by the following:  

  (30) 

And accordingly, the solution separation variance is computed by: 

  (31) 

Finally, the test threshold can be determined using (29). However, it is noteworthy that with this method, the continuity risk from 

false alert events is approximate to (but not exactly equal to) the target false alert budget, because the incorrect-fix events under 

the fault-free condition are not considered. This issue will be addressed in our future work. Please also note that this will not 

influence the evaluation of the integrity risk or the protection levels. 

The fault detection test is said to pass only if for all  and  we have the following: 

  (32) 

If any test fails, the integrity monitoring algorithm will issue a fault alarm to the users. 

 

3.4 Determination of the Ambiguity Candidates that Need to be Monitored 

 

To realize the integrity monitoring for AR-enabled GNSS positioning, the effect of incorrect-fix events on the integrity risk 

must be taken into account. Therefore, for each monitored hypothesis, we need to establish a list of the ambiguity candidates that 

need to be considered. The monitored ambiguity candidates include one correct-fix candidate and multiple incorrect-fix 

candidates. This subsection provides a preliminary method of ambiguity candidate determination as follows. 

For hypothesis , the float ambiguity vector  follows a zero-mean normal distribution, i.e., . Then, 

 is decorrelated using Equation (19), with  being the transformation matrix. The decorrelated ambiguity vector  

follows . To evaluate the probability of the incorrect-fix events, we first perform a LTDL decomposition as 

. Then the probability that the vector  is fixed to an arbitrary ambiguity candidate  is given by [8]: 



  (33) 

where  is the length of ;  denotes the truth for . The vector  is the  row vector of ;  is 

equal to square root of the  diagonal element of . 

Algorithm 1: Establish a List of the Ambiguity Candidates that Need Considering 

Inputs: , , ; 

 － the threshold for the probability from unmonitored candidates; 

   － the threshold for the probability of one candidate, e.g., 10-13; 

Step 1: Set a proper bound on the offset of an ambiguity, , e.g.,  3. 

Step 2:  

; ; ; ; % Initialize 

for   % is the number of incorrect-fix ambiguities 

  ; ; % stores the ambiguity offsets and their probabilities 

  for  % offset value 

for  

  for  

    ; 

    if  equals to 0 

      ; 

      if   % a positive offset vector 

        calculate the probability of  occurring using (33); 

if  % do not monitor low-probability candidates 

          append  to ; append  to ; % a new candidate 

end 

end 

end 

end 

end 

  end 

append  to ; append  to ;  % append the negative offsets 

; % update the probability from unmonitored offsets 

if       % a threshold for the probability from unmonitored offsets 

append  to ; append  to ; 

; % for next  

break; 

end 

end 

 

Outputs:    － each column of it is an ambiguity offset vector; 

           － each entry of it is the probability of the associated offset vector; 

         － the sum of the probabilities from unmonitored offsets.  



For the convenience of the following derivations, let us replace  with , which represents the offset between 

the estimated integer ambiguity vector and the truth. For example,   (i.e., the correct fix) and 

. According to Equation (33), we can find that for  and , their probabilities of occurrence are 

exactly the same. Therefore, let us introduce another index, , such that . And we call  and  as a 

positive-negative pair of ambiguity offsets, where  is called a positive offset. To distinguish between  and , we 

define a function that satisfy the following: 

  (34) 

With the fundamentals above, we provide a preliminary method to establish a list of the ambiguity candidates (or offsets) 

that are worth considering for fault mode . The algorithm is summarized in Algorithm 1. The basic idea of this algorithm is a 

step-by-step search with three loops: the outer loop is about the number of incorrect-fix ambiguities, the middle loop is about the 

values of the offsets for the incorrect-fix ambiguities, and the inner loop is about which ambiguities are incorrectly fixed. The 

search will quit once the sum of the probabilities of unmonitored candidates,  , is smaller than the preset threshold 

. It is noteworthy that with this algorithm, the ambiguity offsets that need to be considered include 1 zero offset (i.e., 

) and  positive-negative pairs (i.e.,  and , ). Therefore, the total number of the monitored 

incorrect-fix events for fault mode  is given by: 

  (35) 

Because  and  are the offsets for the decorrelated ambiguity vector, we need to determine the corresponding 

offsets for the original ambiguity vector, i.e.,  and . This can be achieved by: 

  (36) 

 and  will be used in the next subsection to evaluate the integrity risk from incorrect-fix events. 

 

3.5 Evaluation of the Protection Levels 

 

If there is no fault alarm, the corresponding protection levels (PLs) of PPP-RTK positioning can be evaluated. The PL 

represents a safety-assured error bound, of which the mathematical definition is given by [12]: 

  (37) 

where: 

 denotes the total target integrity risk requirement; 

 is the integrity risk requirement allocated to the  position component; 

  is the sum of the probabilities of all the unmonitored events; 

  is the all-in-view solution; if it is fixed, then ; otherwise, . 

  is the truth for the  position component; 

  is the event that there is no fault alarm; 

  represents the protection level for  position component. 

The evaluation of the protection levels varies with the fix status of the all-in-view solution and the fault-tolerant solutions. 

Therefore, in the following, we will discuss all the possible cases one by one. 

(1) The all-in-view solution is not fixed 

In this case, all the solutions are float, and thus the formula to evaluate the PLs is the same as that for ambiguity-float PPP-

RTK positioning. To be more specific, the PL can be computed using the baseline MHSS algorithm, as shown below [12]: 



  (38) 

with  and . In this equation,  is the tail probability of a zero-mean unit normal distribution. 

(2) The all-in-view solution is fixed 

If the all-in-view solution is fixed, the effects of the incorrect-fix events must be considered in the evaluation of the 

protection levels. Let us first consider the case where all the solutions are fixed. In this case, multiple incorrect-fix events are 

taken into account under each of the monitored fault modes. This is achieved by a two-layer total probability formula as follows: 

  (39) 

In this equation, the first-layer hypotheses are the monitored fault modes, and the second-layer events are the monitored 

ambiguity candidates for each monitored fault mode. 

Then Equation (39) is modified as follows to address a more general case where the subset solutions can be fixed or float: 

 (40) 

where  includes the indexes of the subsets with a fixed solution, and  consists of the indexes of the subsets that output 

a float solution. 

Finally, we provide a formula to evaluate the PLs of AR-enabled PPP-RTK positioning systems as follows: 

  (41) 

where the first term of the right-hand side denotes the contribution of the all-in-view fault mode to the integrity risk, the second 

term is the contribution from the fault-tolerant fault modes that generate a fixed solution, and the last term is the contribution 

from the fault modes that output a float solution. These terms are respectively computed by: 

  (42) 

  (43) 

  (44) 

where  is a row vector that reflects the effect of the ambiguity offset on the position error. And according to Equation (21), 

it can be computed by: 

  (45) 



where  is a 1×3 row vector whose  entry is 1 and the others are 0. As a reminder, in the subscripts,  denotes the 

ambiguity vector, and  represents the position vector. 

Finally, in the left-hand side of Equation (41),  should account for not only the integrity risk from unmonitored fault 

modes but also that from unmonitored ambiguity candidates. Therefore,  can be determined by: 

  (46) 

The proof of safety associated with the protection level in Equation (41) can be found in Appendix. 

 

4. SIMULATION RESULTS 

 

Using the simplified PPP-RTK model as an example, we carry out multiple sets of simulations in this section to validate the 

proposed integrity monitoring algorithm for ambiguity resolution enabled GNSS positioning.  

 

4.1 Simulation Set-up 

 

The simulations are conducted around an example scenario where a PPP-RTK user end provides precise positions to enable 

autonomous navigation for a UAM vehicle flying above the buildings. In the simulation, the air vehicle travels northward at a 

constant speed of 20 meters per second, and the starting point of the trajectory is at (30.53
o
N, 114.36

o
E, 100 meters). The starting 

epoch is at 08:00:00 on January 1, 2022 (Beijing Time), and the trajectory lasts for 15 minutes with a 1-second sampling interval. 

Table 5. List of Constants 

Category Parameters Symbols Values 

Probabilities Satellite fault probabilities   10-5 

Performance 

Requirements 

Integrity risk allocations for east, north, and up positions  
= =2×10-9; 

=9.8×10-8 

False alert budgets for east, north, and up positions  
= =9×10-8; 

=3.9×10-6 

Algorithm 

Settings 

Success rate threshold for the all-in-view solution and fault-

tolerant solutions 

; 

 

 0.9999; 

 0.99 

Threshold for the integrity risk from unmonitored fault modes   6×10-8 

Threshold for the integrity risk from unmonitored ambiguity 

candidates 

; 

 

=1×10-9; 

=1×10-5 

The positions of the GNSS satellites, including GPS and BDS-3, are derived from the precise orbit file. The receiver raw 

measurements and the SSR products are simulated based on the error models in Section 2.1. One can refer to Equations (1) ~ 

(5), Tables 1~3 for the details. The initial values for the KF are simulated according to Table 3, and the error models used in the 

Kalman filter and the sliding-window least-squares estimator are obtained based on Tables 1~3. Finally, the prior fault 

probabilities for each satellite, the navigation performance requirements, and the algorithm settings are provided in Table 5. 

 

4.2 Results and Analyses 

 

Based on the settings above, this subsection will show the simulation results and analyze the performance of the proposed 



integrity monitoring algorithm. Fig. 5 compares the position errors between the fixed solution and the float solution, which are 

output from a Kalman filter. For the fixed solution, the ambiguities are always fixed without checking the ambiguity resolution 

success rate threshold. As shown in this figure, ambiguity resolution obviously benefits the navigation results. 

Fig.6 compares the PLs with and without enabling ambiguity resolution for a KF. For the first 20 epochs in this figure, the 

all-in-view solution is not fixed because its ambiguity resolution success rate is below the corresponding threshold. Therefore, 

the two protection level curves are coincident. Then, it can be observed that over the following period, enabling the ambiguity 

resolution function can significantly improve the navigation integrity performance, i.e., reduce the protection levels. It is worth 

mentioning that the two protection level curves are coincident again in the segments highlighted by the red ellipses. To reveal 

the underlying reason behind this phenomenon, Fig. 7 shows the AR success rates for the all-in-view solution and the subset 

solutions. As shown in this figure, this phenomenon is caused by the fact that the AR success rates suddenly become too high for 

the all-in-view solution to be fixed. And it is the addition of a new satellite that leads to the increase in the AR success rates.  

            

Fig. 5. Comparison of the position errors                Fig. 6. Comparison of the protection levels 

between the fixed and float solutions.               with and without enabling ambiguity resolution    

 

Fig. 7. The ambiguity resolution success rates for the all-in-view and subset solutions 

To demonstrate the proposed integrity monitoring algorithm, Fig. 8 shows the position errors and the corresponding 

protection levels in one figure. The results prove that the protection levels can safety bound the position errors. Fig. 9 shows the 

test statistics and the thresholds for subset 1, and it suggests that there is no false alert in a fault-free condition. Besides, Fig. 10 

and Fig. 11 present the results in a faulted condition, where an undetected cycle slip of 2 cycles is added to satellite G05 from 

70s to 90s. It can be seen from the figures that this fault leads to large position errors, and the fault detector can detect the fault 

in time. Besides, the protection levels can always safely bound the position errors when there is no fault alarm. Please note that 

in Fig. 10 and Fig. 11, the red squares indicate the fault detection point, and the curves in the shadow area are meaningless 

because the system will quit once a fault is detected.  



       

Fig. 8. Protection levels and position errors             Fig. 9. Test statistics and thresholds for subset 1 

              in a fault-free condition                             in a fault-free condition 

              

Fig. 10. Protection levels and position errors        Fig. 11. Test statistics and thresholds for subset 1 

            in the presence of an undetected cycle slip             in the presence of an undetected cycle slip 

           

Fig. 12. Protection levels and position errors of         Fig. 13. Ambiguity resolution success rates of  

a sliding-window least-squares estimator              a sliding-window least-squares estimator 

Finally, the position errors and PLs associated with the sliding-window least-squares estimator are shown in Fig. 12, and 

the AR success rates are presented in Fig.13. The length of the sliding window is set to 30 epochs. The results suggest that the 

SWLS estimator produces similar navigation performance to that of the KF. It is noteworthy that in the simulations above, we 

do not consider the effect of exposure time on the prior fault probability. In our future work, we will make a fairer comparison 

between the integrity performance of the KF and the SWLS estimator by taking the effect of exposure time into account.  

 



5. CONCLUSIONS 

 

We develop an integrity monitoring algorithm for ambiguity resolution enabled GNSS high-precision positioning. This 

algorithm is established with a simplified PPP-RTK model and supports both Kalman filters and sliding-window least-squares 

estimators. The proposed algorithm can accommodate faulted observations (i.e., raw measurements and correction products) and 

incorrect ambiguity resolution simultaneously, through a modified multiple hypothesis solution separation (MHSS) architecture. 

The MHSS-based fault detection mechanism is described, and the formula to evaluate the protection levels is derived accordingly, 

which rigorously accounts for the risk from incorrect-fix events under each of the monitored hypotheses. Simulation results 

prove that the proposed integrity monitoring algorithm can provide a tight and safe error bound, and it can detect the faults in an 

effective manner. Also, the results suggest that enabling ambiguity resolution can significantly benefit the navigation 

performance in terms of both accuracy and integrity, even though incorrect-fix events are considered. 

The limitations of the proposed algorithm mainly include: (a) it only supports the integer bootstrapping ambiguity resolution 

method; (b) the computational load is heavy; (c) fault exclusion is not implemented; (d) spatial and temporal error correlations 

are not considered. In our future work, we will address these limitations and extend the applicability of this algorithm.  

 

APPENDIX. PROTECTION LEVEL PROOF OF SAFETY 

 

This appendix proves the safety of the PLs given by Equations (41) ~ (46) in the case where the all-in-view solution is fixed. 

(1) The integrity risk from the fault-free fault mode 

For the fault-free fault mode (  0), its contribution to the integrity risk is given by: 

  (47) 

where  is the noise component of ( ), which follows . Given that there are ( ) ambiguity offsets 

being monitored, including 1 zero offset (i.e.,  ) and   positive-negative pairs (i.e.,   and  , where 

), the equation above can further become: 

  (48) 

This completes the proof for Equation (42). 

(2) The integrity risk from a fault mode  with a fixed fault-tolerant solution (  and ) 

Then, for a fault mode  that outputs a fixed solution, i.e.,  and , its contribution to the integrity risk can be 

computed by: 



  (49) 

Under fault mode , we have the following: 

  (50) 

where  denotes the ambiguity offset for the all-in-view solution under , and  is the effect of the faults on position 

error. For the convenience of the following derivations, we define: 

  (51) 

Because  follows an arbitrary distribution, the probability density function (PDF) for  is also arbitrary. Substituting 

(50) and (51) into (49) yields: 

  (52) 

with . 

Let us start from the case : 

  (53) 

where  represents the event . For first term of the right-hand side, we have: 

  (54) 

And for the second term, we have: 

  (55) 

Substituting (55) and (54) into (53) yields: 

  (56) 

Similarly, for the case , we have: 



  (57) 

Given that the monitored ( ) ambiguity offsets are composed of 1 zero offset (i.e., ) and  positive-negative pairs 

(i.e.,  and , where ), we can obtain the following: 

  (58) 

And thus, Equation (52) becomes: 

  (59) 

This completes the proof for Equation (43). 

(3) The integrity risk from a fault mode  with a float fault-tolerant solution (  and ) 

Finally, for a fault mode  that outputs a float solution, i.e.,  and , its contribution to the integrity risk can 

be computed by: 

  (60) 

Similar to Equation (52), we have: 

  (61) 

with . 

For the case , we have: 

  (62) 

where  represents the event . For first term of the right-hand side, we can obtain the following: 

  (63) 

For the second term, we can get: 

  (64) 



Substituting (63) and (64) into (62) yields: 

  (65) 

Similarly, for the case , we can obtain the same result as above. Therefore, Equation (60) finally becomes 

  (66) 

This completes the proof for Equation (44). 
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